Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-28115346

ABSTRACT

The role broad-spectrum antibiotics play in the spread of antimicrobial resistance, coupled with their effect on the healthy microbiome, has led to advances in pathogen-specific approaches for the prevention or treatment of serious bacterial infections. One approach in clinical testing is passive immunization with a monoclonal antibody (MAb) targeting alpha toxin for the prevention or treatment of Staphylococcus aureus pneumonia. Passive immunization with the human anti-alpha toxin MAb, MEDI4893*, has been shown to improve disease outcome in murine S. aureus pneumonia models. The species specificity of some S. aureus toxins necessitates testing anti-S. aureus therapeutics in alternate species. We developed a necrotizing pneumonia model in ferrets and utilized an existing rabbit pneumonia model to characterize MEDI4893* protective activity in species other than mice. MEDI4893* prophylaxis reduced disease severity in ferret and rabbit pneumonia models against both community-associated methicillin-resistant S. aureus (MRSA) and hospital-associated MRSA strains. In addition, adjunctive treatment of MEDI4893* with either vancomycin or linezolid provided enhanced protection in rabbits relative to the antibiotics alone. These results confirm that MEDI4893 is a promising candidate for immunotherapy against S. aureus pneumonia.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Pneumonia, Necrotizing/drug therapy , Staphylococcus aureus/physiology , Animals , Anti-Bacterial Agents/pharmacology , Antibodies, Monoclonal/immunology , Ferrets , Hemolysin Proteins/metabolism , Methicillin-Resistant Staphylococcus aureus/physiology , Pneumonia, Necrotizing/microbiology , Pneumonia, Staphylococcal , Rabbits , Staphylococcus aureus/drug effects
2.
Antimicrob Agents Chemother ; 60(10): 5640-8, 2016 10.
Article in English | MEDLINE | ID: mdl-27401576

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) causes large-scale epidemics of acute bacterial skin and skin structure infections (ABSSSI) within communities across the United States. Animal models that reproduce ABSSSI as they occur in humans are urgently needed to test new therapeutic strategies. Alpha-toxin plays a critical role in a variety of staphylococcal infection models in mice, but its role in the pathogenesis of ABSSSI remains to be elucidated in rabbits, which are similar to humans in their susceptibility to S. aureus superantigens and certain bicomponent pore-forming leukocidins. We report here a new rabbit model of ABSSSI and show that those infected with a mutant deficient in expression of alpha-toxin (Δhla) developed a small dermonecrotic lesion, whereas those infected with isogenic USA300 MRSA wild-type or complemented Δhla strains developed ABSSSI that mimic the severe infections that occur in humans, including the large central dermonecrotic core surrounded by erythema, induration, and marked subcutaneous hemorrhage. More importantly, immunoprophylaxis with MEDI4893*, an anti-alpha-toxin human monoclonal antibody, significantly reduced the severity of disease caused by a USA300 wild-type strain to that caused by the Δhla mutant, indicating that this toxin could be completely neutralized during infection. Thus, this study illustrates a potential high standard for the development of new immunotherapeutic agents in which a toxin-neutralizing antibody provides protection to the same degree achieved with a toxin gene knockout. When MEDI4893* was administered as adjunctive therapy with a subtherapeutic dose of linezolid, the combination was significantly more efficacious than either agent alone in reducing the severity of ABSSSI.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antibodies, Neutralizing/pharmacology , Bacterial Toxins/immunology , Hemolysin Proteins/immunology , Skin Diseases, Bacterial/microbiology , Staphylococcal Skin Infections/drug therapy , Animals , Antibodies, Monoclonal, Humanized , Bacterial Toxins/genetics , Broadly Neutralizing Antibodies , Disease Models, Animal , Hemolysin Proteins/genetics , Humans , Linezolid/blood , Linezolid/pharmacology , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/immunology , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Pre-Exposure Prophylaxis/methods , Rabbits , Skin Diseases, Bacterial/immunology , Staphylococcal Skin Infections/immunology , Staphylococcal Skin Infections/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL