Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Plants ; 8(11): 1233-1244, 2022 11.
Article in English | MEDLINE | ID: mdl-36376755

ABSTRACT

Sweet potato (Ipomoea batatas L.) is a major root crop worldwide. Sweet potato weevils (SPWs) pose one of the most significant challenges to sweet potato production in tropical and subtropical regions, causing deleterious economic and environmental effects. Characterizing the mechanisms underlying natural resistance to SPWs is therefore crucial; however, the genetic basis of host SPW resistance (SPWR) remains unclear. Here we obtained two sweet potato germplasm with high SPWR and, by map-based cloning, revealed two major SPW-resistant genes-SPWR1 and SPWR2-that are important regulators of natural defence against SPWs. The SPW-induced WRKY transcriptional factor SPWR1 directly activates the expression of SPWR2, and SPWR2, the conserved dehydroquinate synthase, promotes the accumulation of quinate derivative metabolites that confer SPWR in sweet potato. Generally, our results provide new insights into the molecular mechanism underlying sweet potato-SPW interactions and will aid future efforts to achieve eco-friendly SPW management.


Subject(s)
Ipomoea batatas , Weevils , Animals , Ipomoea batatas/genetics , Weevils/genetics
2.
J Adv Res ; 24: 513-522, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32612857

ABSTRACT

Sweetpotato weevil is among the most harmful pests in some major sweetpotato growing areas with warm climates. To enable the future establishment of safe weevil-resistance strategies, anti-weevil metabolites from sweetpotato should be investigated. In the present study, we pretreated sweetpotato leaves with exogenous chlorogenic acid and then exposed them to sweetpotato weevils to evaluate this compound's anti-insect activity. We found that chlorogenic acid applied to sweetpotato conferred significant resistance against sweetpotato-weevil feeding. We also observed enhanced levels of chlorogenic acid in response to weevil attack in sweetpotato leaves. To clarify how sweetpotato weevils regulate the generation of chlorogenic acid, we examined key elements of plant-herbivore interaction: continuous wounding and phytohormones participating in chlorogenic acid formation. According to our results, sweetpotato weevil-derived continuous wounding induces increases in phytohormones, including jasmonic acid, salicylic acid, and abscisic acid. These phytohormones can upregulate expression levels of genes involved in chlorogenic acid formation, such as IbPAL, IbC4H and IbHQT, thereby leading to enhanced chlorogenic acid generation. This information should contribute to understanding of the occurrence and formation of natural anti-weevil metabolites in sweetpotato in response to insect attack and provides critical targets for the future breeding of anti-weevil sweetpotato cultivars.

SELECTION OF CITATIONS
SEARCH DETAIL
...