Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Nat Biotechnol ; 42(2): 229-242, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38361054

ABSTRACT

The application of computational biology in drug development for membrane protein targets has experienced a boost from recent developments in deep learning-driven structure prediction, increased speed and resolution of structure elucidation, machine learning structure-based design and the evaluation of big data. Recent protein structure predictions based on machine learning tools have delivered surprisingly reliable results for water-soluble and membrane proteins but have limitations for development of drugs that target membrane proteins. Structural transitions of membrane proteins have a central role during transmembrane signaling and are often influenced by therapeutic compounds. Resolving the structural and functional basis of dynamic transmembrane signaling networks, especially within the native membrane or cellular environment, remains a central challenge for drug development. Tackling this challenge will require an interplay between experimental and computational tools, such as super-resolution optical microscopy for quantification of the molecular interactions of cellular signaling networks and their modulation by potential drugs, cryo-electron microscopy for determination of the structural transitions of proteins in native cell membranes and entire cells, and computational tools for data analysis and prediction of the structure and function of cellular signaling networks, as well as generation of promising drug candidates.


Subject(s)
Machine Learning , Membrane Proteins , Cryoelectron Microscopy/methods , Membrane Proteins/chemistry , Computational Biology , Drug Development
2.
Zhongguo Zhong Yao Za Zhi ; 48(3): 725-735, 2023 Feb.
Article in Chinese | MEDLINE | ID: mdl-36872236

ABSTRACT

This study aimed to parallelly investigate the cardioprotective activity of Cinnamomi Ramulus formula granules(CRFG) and Cinnamomi Cortex formula granules(CCFG) against acute myocardial ischemia/reperfusion injury(MI/RI) and the underlying mechanism based on the efficacy of "warming and coordinating the heart Yang". Ninety male SD rats were randomly divided into a sham group, a model group, CRFG low and high-dose(0.5 and 1.0 g·kg~(-1)) groups, and CCFG low and high-dose(0.5 and 1.0 g·kg~(-1)) groups, with 15 rats in each group. The sham group and the model group were given equal volumes of normal saline by gavage. Before modeling, the drug was given by gavage once a day for 7 consecutive days. One hour after the last administration, the MI/RI rat model was established by ligating the left anterior descending artery(LAD) for 30 min ischemia followed by 2 h reperfusion except the sham group. The sham group underwent the same procedures without LAD ligation. Heart function, cardiac infarct size, cardiac patho-logy, cardiomyocyte apoptosis, cardiac injury enzymes, and inflammatory cytokines were determined to assess the protective effects of CRFG and CCFG against MI/RI. The gene expression levels of nucleotide-binding oligomerization domain-like receptor family pyrin domain protein 3(NLRP3) inflammasome, apoptosis-associated speck-like protein containing a CARD(ASC), cysteinyl aspartate specific proteinase-1(caspase-1), Gasdermin-D(GSDMD), interleukin-1ß(IL-1ß), and interleukin-18(IL-18) were determined by real-time quantitative polymerase chain reaction(RT-PCR). The protein expression levels of NLRP3, caspase-1, GSDMD, and N-GSDMD were determined by Western blot. The results showed that both CRFG and CCFG pretreatments significantly improved cardiac function, decreased the cardiac infarct size, inhibited cardiomyocyte apoptosis, and reduced the content of lactic dehydrogenase(LDH), creatine kinase MB isoenzyme(CK-MB), aspartate transaminase(AST), and cardiac troponin Ⅰ(cTnⅠ). In addition, CRFG and CCFG pretreatments significantly decreased the levels of IL-1ß, IL-6, and tumor necrosis factor-α(TNF-α) in serum. RT-PCR results showed that CRFG and CCFG pretreatment down-regulated the mRNA expression levels of NLRP3, caspase-1, ASC, and downstream pyroptosis-related effector substances including GSDMD, IL-18, and IL-1ß in cardiac tissues. Western blot revealed that CRFG and CCFG pretreatments significantly decreased the protein expression levels of NLRP3, caspase-1, GSDMD, and N-GSDMD in cardiac tissues. In conclusion, CRFG and CCFG pretreatments have obvious cardioprotective effects on MI/RI in rats, and the under-lying mechanism may be related to the inhibition of NLRP3/caspase-1/GSDMD signaling pathway to reduce the cardiac inflammatory response.


Subject(s)
Myocardial Infarction , Myocardial Reperfusion Injury , Male , Animals , Rats , Rats, Sprague-Dawley , Interleukin-18 , NLR Family, Pyrin Domain-Containing 3 Protein , Tumor Necrosis Factor-alpha , Caspase 1
3.
Cell Mol Neurobiol ; 43(2): 605-619, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35460435

ABSTRACT

Diabetes is a common metabolic disease characterized by loss of blood sugar control and a high rate of complications. γ-Aminobutyric acid (GABA) functions as the primary inhibitory neurotransmitter in the adult mammalian brain. The normal function of the GABAergic system is affected in diabetes. Herein, we summarize the role of the GABAergic system in diabetic cognitive dysfunction, diabetic blood sugar control disorders, diabetes-induced peripheral neuropathy, diabetic central nervous system damage, maintaining diabetic brain energy homeostasis, helping central control of blood sugar and attenuating neuronal oxidative stress damage. We show the key regulatory role of the GABAergic system in multiple comorbidities in patients with diabetes and hope that further studies elucidating the role of the GABAergic system will yield benefits for the treatment and prevention of comorbidities in patients with diabetes.


Subject(s)
Brain Diseases , Diabetes Mellitus , Hypoglycemia , Animals , Adult , Humans , gamma-Aminobutyric Acid/metabolism , Blood Glucose , Mammals/metabolism
4.
Chem Biol Interact ; 368: 110245, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36341777

ABSTRACT

Cinnamaldehyde (CD) is one of the most important active compounds derived from Cinnamomum cassia and showed multiple biological activities. Accumulating evidence has shown that the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome significantly contributes to sterile inflammatory response and gasdermin D (GSDMD)-mediated pyroptosis in myocardial ischemia/reperfusion injury (MI/RI). Whether CD has any influence on NLRP3 inflammasome activation and pyroptosis during myocardial I/R injury remains unknown. In the present study, we investigated the cardioprotective effect of CD via establishing the MI/RI rats' model by ligating the left anterior descending coronary artery for 30 min ischemia followed by 120 min reperfusion. Sprague-Dawley rats were intragastrically administered with CD (45 and 90 mg/kg/d) or vehicle for 7 successive days before ligation of the coronary artery to evoke MI/RI. The results found that CD significantly improved cardiac diastolic function, decreased cardiac infarct size and myocardial injury enzymes, inhibited cardiomyocyte apoptosis, attenuated cardiac structure abnormality, and mitigated oxidative stress and inflammatory response. We also found that MI/RI activated the NLRP3 inflammasome as evidenced by the upregulation levels of NLRP3, pro-caspase-1, caspase-1, and ASC proteins and mRNA. Importantly, MI/RI could trigger cardiomyocyte pyroptosis by increased DNA fragmentation, membrane pore formation, and mitochondrial swelling as well as increased levels of pyroptosis-related proteins and mRNA, including GSDMD, IL-18, and IL-1ß. As expected, all these deleterious alterations were reversed by CD pretreatment. Our findings demonstrated that CD showed an outstanding cardioprotective effect via inhibiting NLRP3 inflammasome activation and GSDMD-mediated cardiomyocyte pyroptosis, which has a promising application value and development prospect against myocardial I/R injury in the future.


Subject(s)
Myocardial Reperfusion Injury , Reperfusion Injury , Animals , Rats , Caspase 1/metabolism , Inflammasomes/metabolism , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis , Rats, Sprague-Dawley , Reperfusion Injury/metabolism , RNA, Messenger/metabolism
5.
Food Chem ; 397: 133731, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-35908464

ABSTRACT

Phellinus spp., an important medicinal fungus mushroom extensively cultivated and consumed in East Asia for over 2000 years, is traditionally considered a precious food supplement and medicinal ingredient. Published studies showed that the polysaccharides are major bioactive macromolecules from Phellinus spp. (PPs) with multiple health-promoting effects, including immunomodulatory, anti-cancer, anti-inflammatory, hepatoprotective, hypoglycemic, hypolipidemic, antioxidant, and other bioactivities. Although the polysaccharides extracted from the fruiting body, mycelium, and fermentation broth of Phellinus spp. have been extensively studied for the extraction and purification methods, structural characteristics, and pharmacological activities, the knowledge for their structures and bioactivity relationship, toxicologic effects, and pharmacokinetic profile is limited. This review systematically summarizes the recent progress in the isolation and purification, chemical structures, bioactivities, and the underlying mechanisms of PPs. Information from this review provides insights into the further development of polysaccharides from PPs as therapeutic agents and functional foods.


Subject(s)
Agaricales , Agaricales/chemistry , Anti-Inflammatory Agents , Antioxidants/chemistry , Mycelium , Phellinus , Polysaccharides/chemistry
6.
J Ethnopharmacol ; 296: 115506, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-35760256

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Polysaccharides from Atractylodes macrocephala are important components isolated and extracted from the traditional Chinese medicine named Atractylodes macrocephala Koidz. Traditionally, A. macrocephala has been used to strengthen the spleen, benefit qi, dry dampness and promote water circulation, and prevent miscarriage. As the main components, polysaccharides from A. macrocephala have a variety of related pharmacological activities, such as the ability to regulate the gastrointestinal tract, protect the liver and so on. AIM OF THE REVIEW: This review aims to compile the extraction and purification methods, structural characteristics and pharmacological activities of polysaccharides from A. macrocephala and the mechanisms of actions to explore the future application potential of polysaccharides from A. macrocephala. MATERIALS AND METHODS: Valid and comprehensive relevant information was collected from China National Knowledge Infrastructure, Web of Science, Pubmed and so on. RESULTS: More than 20 polysaccharides have been extracted from A. macrocephala, different extraction and purification methods have been described, and the composition structures and pharmacological activities of polysaccharides from A. macrocephala have been reviewed. Polysaccharides, as important components of A. macrocephala, were mainly extracted by four methods such as water decoction, ultrasonic-assisted extraction, complex enzyme method and microwave-assisted extraction, and then were obtained through decolorization, deproteinization and separation and purification by various chromatographic columns. The chemical compositions and structures of polysaccharides from A. macrocephala show diversification, and three structural formulae have been confirmed at this stage. Polysaccharides from A. macrocephala have a variety of pharmacological activities, such as immunomodulation, antitumor, antioxidant, hepatoprotection, gastrointestinal mucosa protection, neuroprotection, hypoglycemia, growth promotion and so on. CONCLUSIONS: There is a diversity in the compositional structures of polysaccharides from A. macrocephal, which have multiple biological activities and promising applications. Therefore, further understanding of the relationship between structures and functions of polysaccharides from A. macrocephaly, and potential synergistic effects with other substances is especially important for its development and utilization.


Subject(s)
Atractylodes , Atractylodes/chemistry , China , Medicine, Chinese Traditional , Polysaccharides/chemistry , Polysaccharides/pharmacology , Water
7.
Front Microbiol ; 13: 872505, 2022.
Article in English | MEDLINE | ID: mdl-35756044

ABSTRACT

Herpes simplex virus type 1 (HSV-1) is a ubiquitous and important human pathogen capable of causing significant clinical diseases ranging from skin damage to encephalitis, particularly in immunocompromised and neonatal hosts. Currently, widely used nucleoside analogs, including acyclovir and penciclovir, have some limitations in their use due to side effects and drug resistance. Herein, we report sophoridine's (SRI) dramatic inhibition of HSV-1 replication in vitro. SRI exhibited a remarkable inhibitory influence on HSV-1 virus-induced cytopathic effect and plaque formation, as well as on progeny viruses in Vero and HeLa cells, with selection indexes (SI) of 38.96 and 22.62, respectively. Moreover, SRI also considerably suppressed HSV-1 replication by hindering the expression of viral immediate-early (ICP0 and ICP22), early (ICP8 and TK), and late (gB and gD) genes and the expression of viral proteins ICP0, gB, and gD. We suggest that SRI can directly inactivate viral particles and block some stages in the life cycle of HSV-1 after adsorption. Further experiments showed that SRI downregulated the cellular PI3K/Akt signaling pathway and obstructed HSV-1 replication even more. Most importantly, SRI markedly repressed HSV-1-induced p38 MAPK pathway activation. Collectively, this natural bioactive alkaloid could be a promising therapeutic candidate against HSV-1 via the modulation of cellular PI3K/Akt and p38 MAPK pathways.

8.
Front Pharmacol ; 13: 824579, 2022.
Article in English | MEDLINE | ID: mdl-35370749

ABSTRACT

Fengreqing oral liquid (FOL), a Chinese patent drug frequently used in clinical practice in China, is effective in treating inflammatory diseases of the upper respiratory tract such as colds and flu. However, its anti-inflammatory effects and mechanisms remain to be elucidated. In this study, the anti-inflammatory effects of FOL and its mechanisms on PI3K/AKT and NF-κB signaling pathways in LPS-induced RAW264.7 cells were explored, as well as the regulatory effect of FOL on apoptosis. In addition, the potential of FOL for the treatment of acute lung injury was explored in LPS-induced ALI mice. The results showed that treatment with FOL significantly reduced the levels of interleukin 1ß (IL-1ß), interleukin 6 (IL-6), nitric oxide (NO), and tumor necrosis factor α (TNF-α) in the supernatant of LPS-induced RAW264.7 cells, and also significantly reduced the phosphorylated protein levels of PI3K and AKT in the PI3K/AKT signaling pathway and also protein levels of NF-κB p50, phosphorylated NF-κB p65, and IκBα in the NF-κB signaling pathway. In addition, the results showed that FOL induced apoptosis in LPS-induced RAW264.7 cells at the level of 80%-90%, and significantly increased the protein expression levels of the pro-apoptotic Bax and cleaved-caspase-3. In LPS-induced ALI mice, FOL administration showed inhibition of IL-1ß, IL-6, and TNF-α in Bronchoalveolar lavage fluid (BALF) and decreased protein expression levels of PI3K, AKT, NF-κB p50, and NF-κB p65, and elevated protein expression levels of Bax and cleaved-caspase-3 significantly. These results suggest that FOL may exert anti-inflammatory effects by inhibiting the PI3K/AKT signaling pathway to promote apoptosis and leading to attenuated activation of the NF-κB signaling pathway.

9.
J Ethnopharmacol ; 293: 115300, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35430288

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Baishouwu has been used in China for thousands of years since it was first discovered in the late Tang Dynasty and flourished in the Song and Ming Dynasties. The Chinese herbal medicines named Baishouwu include Cynanchum auriculatum Royle ex Wight., Cynanchum bungei Decne. and Cynanchum wilfordii Hemsl. It is described in the Sign of Materia Medica as "sweet, bitter, reinforce liver and kidney, and non-toxic". It is widely used for nourishing the blood to expel wind, reinforcing liver and kidney, strengthening bones and muscles. AIM OF THE REVIEW: In this review, the current research status of the C21 steroidal glycosides and their derivatives of Baishouwu for malignant tumours and their anti-tumour mechanisms are discussed. This may lay the ground for potential application of Baishouwu and its active ingredients in the treatment of tumours. MATERIALS AND METHODS: Scientific databases, including PubMed, Elsevier, Science Direct, Google Scholar, CNKI, WANFANG DATA and VIP were searched to gather data about Baishouwu and its C21 steroidal glycosides and their derivatives. RESULTS: Prior literature indicates that Baishouwu has important biological activities such as anti-tumour, anti-epileptic, reducing cholesterol, protection of liver and kidney and immunomodulatory, which are of increasing interest, especially its anti-tumour activity. Recent studies demonstrate that the C21 steroidal glycosides of Baishouwu, which have prominent antitumour efficacy, are one of its main active ingredients. Presently, a variety of C21 steroidal glycosides have been isolated from Baishouwu medicinal part, the tuberous root. This review summarizes the various antitumour activities of the C21 steroidal glycosides and their derivatives of Baishouwu. CONCLUSIONS: In this review, the antitumour effects and mechanisms of total C21 steroidal glycosides and monomers and derivatives of Baishouwu in vitro and in vivo were summarized. Baishouwu can inhibit tumourigenesis by blocking tumour cell cycle progression, regulating numerous signaling pathways, promoting apoptosis, inhibiting tumour cells proliferation and metastasis, improving immunity and so on. This review provides a theoretical basis for inheriting and developing the medical heritage of the motherland, exploring the resources of traditional Chinese medicine for ethnic minorities and clinical rational drug use.


Subject(s)
Cynanchum , Apoptosis , Glycosides/pharmacology , Glycosides/therapeutic use , Liver , Medicine, Chinese Traditional
10.
J Ethnopharmacol ; 293: 115273, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35405258

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Osmanthus fragrans Lour., is a medicinal plant distributed widely in some Asian countries including Japan and Korea and southwestern China. It has been used traditionally for the treatment of weakened vision, halitosis, panting, asthma, cough, toothache, stomachache, diarrhea, rheumatism, physique pain and hepatitis. AIM OF THE REVIEW: Recent advances in traditional uses, botanical characteristics, distribution, taxonomy, phytochemical constituents, biological effects as well as the toxicities of O. fragrans are comprehensively presented and critically evaluated, and the underlying mechanism associated with the bioactivities of extracts, essential oil and components from this plant is also well summarized. In order to provide comprehensive scientific basis for the medical application and help interested researchers discover food and medicinal natural products from O. fragrans. MATERIALS AND METHODS: All information was systematically gathered from globally accepted scientific databases by Internet databases, including Elsevier, ScienceDirect, PubMed, Web of Science, Wiley, Springer, SciFinder, ACS Publications, CNKI, WanFang, Google Scholar, Baidu Scholar, The Plant List Database, and other literature sources (Ph.D. and MSc dissertations). All published contributions on O. fragrans different languages were included and cited. The chemical structures of all isolated compounds were drawn by using ChemBioDraw Ultra 14.0 software. RESULTS: To date, more than 183 compounds were isolated and structurally identified from different plant parts of O. fragrans. Among them, ionone, ionol, flavonoids, polyphenols and iridoids, as the major bioactive substances, have been extensively studied and displayed the best bioactivity. Pharmacological studies demonstrated that O. fragrans and its active components had a wide range of biological activities, such as antioxidant, antitumor, anti-inflammatory, anti-hyperglycemic, anti-thrombotic, anti-melanogenesis, neuroprotective, and hepatoprotective activities, etc. CONCLUSION: O. fragrans, as a food and medicinal resource, has a good health care function and important edible and medicinal value, and thus has good prospects for utilization. However, many studies on biological activities were mainly based on extracts and the bioactive ingredients of this plant, and the mechanism responsible for these extracts and ingredients have not been well identified and there is a gap in research regarding clinical effect and safety. Therefore, the detail in vitro and in vivo studies on the mechanisms of action of the pure bioactive compounds and more clinical studies are encouraged to be conducted to ensure safety and effectiveness of the plant for human use.


Subject(s)
Oils, Volatile , Oleaceae , Plants, Medicinal , Ethnopharmacology , Humans , Phytochemicals/therapeutic use , Phytochemicals/toxicity , Phytotherapy , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
11.
Phytomedicine ; 100: 154047, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35320770

ABSTRACT

BACKGROUND: Cinnamic acid (CA) is an active organic acid compound extracted from Cinnamomi ramulus that has various biological activities. There is growing studies have shown that the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome significantly contributes to sterile inflammatory response and pyroptosis in myocardial ischemia/reperfusion injury (MI/RI). However, whether CA has any influence on NLRP3 inflammasome and pyroptosis during MI/RI are not fully elucidated. PURPOSE: In the present study, we investigated whether NLRP3 inflammasome activation and pyroptosis were involved in the cardioprotective effect of CA against MI/RI. METHODS: Male Sprague-Dawley rats were intragastrically administered either with CA (75 and 150 mg/kg, daily) or vehicle for 7 successive days prior to ligation of coronary artery, and then rats were subjected to ligation of the left anterior descending coronary artery for 30 min followed by reperfusion for 120 min to evoke MI/RI. RESULTS: Our results demonstrated that CA could significantly improve cardiac diastolic function, decrease cardiac infarct size and myocardial injury enzymes, inhibit cardiomyocyte apoptosis, attenuate cardiac structure abnormality, and mitigate oxidative stress and inflammatory response. We also found that MI/RI activate NLRP3 inflammasome as evidenced by the upregulation levels of NLRP3, pro-caspase-1, caspase-1, and ASC proteins and mRNA. More importantly, MI/RI trigger pyroptosis as indicated by increased DNA fragmentation, membrane pore formation, and mitochondrial swelling as well as increased levels of pyroptosis-related proteins and mRNA, including GSDMD, N-GSDMD, IL-18, and IL-1ß. As expected, all these deleterious alterations were prominently reversed by CA pretreatment. CONCLUSIONS: These findings indicate that CA effectively protected cardiomyocytes against MI/RI by inhibiting NLRP3/Caspase-1/GSDMD signaling pathway, and it is worthy of more investigations for its therapeutic potential for extenuating ischemic heart disease.


Subject(s)
Myocardial Reperfusion Injury , Animals , Caspase 1/metabolism , Cinnamates , Inflammasomes/metabolism , Male , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , RNA, Messenger , Rats , Rats, Sprague-Dawley , Signal Transduction
12.
Phytomedicine ; 96: 153891, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35026506

ABSTRACT

BACKGROUND: Jing-Fang powder consists of Jingjie (Nepeta tenuifolia Benth, (Lamiaceae)). and Fangfeng (Saposhnikovia divaricata (Turcz.) Schischk, (Apiaceae)) Previous studies have revealed that the Jing-Fang powder n-butanol extract (JFNE) has anti-acute lung injury (ALI) and anti-inflammatory properties; however, the active ingredient and mechanism remain unknown. PURPOSE: In the present study, we investigated the anti-inflammatory effect of a bioactive fraction obtained from JFNE(JFNE-A) on lipopolysaccharide (LPS)-induced ALI in mice and explored the underlying mechanism. STUDY DESIGN: The anti-acute lung injury effect and mechanism of JFNE-A was investigated by prophylactic administration of JFNE-A in mice with LPS-induced acute lung injury. METHODS: The expression levels of myeloperoxidase(MPO) in lung tissues of mice and interleukin(IL)-6, tumor necrosis factor(TNF)-α, IL-1ß, IL-5, interferon (IFN)-γ, monocyte chemotactic protein (MCP)-1, macrophage colony stimulating factor (M-CSF), macrophage inflammatory protein (MIP)-1α, and MIP-1ß in bronchi alveolar lavage fluid (BALF) were detected by reagent kit and the histological changes were examined by hematoxylin and eosin (H & E) for general histopathological conditions under a light microscope. In addition, the ultrastructure of the cells in lung tissues were observed and photographed under a transmission electron microscope. The expression levels of protein were detected via Western blotting and the mRNA expression of relative genes were determined of via reverse transcriptase polymerase chain reaction (RT-PCR). What's more, we also further clarified the potential targets of JFNE-A through network pharmacology analysis, which could be utilized in ALI treatment. RESULTS: Our results showed that pretreatment with JFNE-A for 7 days significantly reduced the lung pathological injury score, alleviated pulmonary edema, and decreased the lung tissue MPO level. Mechanistically, JFNE-A dramatically downregulated the protein levels of IL-6, TNF-α, IL-1ß, M-CSF, and IFN-γ in BALF and mRNA expression levels of IL-6, TNF-α, IL-1ß, and IFN-γ in lung tissues. JFNE-A also significantly lowered the protein levels of iNOS and phosphorylated NF-κB (p65) and mRNA expression levels of iNOS, Rela, CHUK, and NF-κB1, and also elevated the protein expression levels of Nrf2, HO-1, and SOD1 and the mRNA expression levels of Nrf2, Hmox1, and Keap-1 in the lungs. Moreover, JFNE-A significantly decreased the protein expression of p62 and increased the ratio of LC3II/LC3I. It also upregulated the mRNA expression levels of Atg5 and Beclin-1, whereas it reduced the mRNA expression level of SQSTM1 and increased autophagosome structures. CONCLUSION: Overall, treatment with JFNE-A ameliorated LPS-induced ALI in mice by suppressing the NF-κB signaling pathways and promoting Nrf2 signaling pathways by accelerating autophagy.


Subject(s)
Acute Lung Injury , Lipopolysaccharides , 1-Butanol , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Autophagy , Butanols , Humans , Lung/metabolism , NF-kappa B/metabolism , Network Pharmacology , Oxidative Stress , Plant Extracts/pharmacology , Signal Transduction
13.
J Ethnopharmacol ; 288: 115005, 2022 Apr 24.
Article in English | MEDLINE | ID: mdl-35051601

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Xiaoyaosan (XYS), a representative and classic traditional Chinese medicine (TCM) prescription with function of dispersing stagnated liver and strengthening spleen, has been used for thousands of years to treat depression. XYS' anti-depression effect has been demonstrated both clinically and experimentally; however, the material basis for this effect has yet to be elucidated. AIM OF THE STUDY: This study aimed to evaluate the impact and underlying action mechanism of XYS' antidepressant active component (Xiaoyaosan ethyl acetate fraction, XYSEF) against chronic unpredictable mild stress (CUMS)-induced depression-like behavior in mice. MATERIALS AND METHODS: First, we established a behavioral despair depression mouse model to preliminarily determine the effective antidepressant dose of XYSEF. Then, we created a CUMS mouse model and used various classic behavioral tests, including SPT, ST, NFST, and TST, to assess XYSEF's antidepressant properties. IGF-1 levels in mouse serum and hippocampus were quantified using ELISA. The average optical density of Nissl bodies in the mouse hippocampal CA3 region was determined utilizing toluidine blue staining. Brdu and DCX expression in the hippocampal dentate gyrus (DG) was assayed using the immunofluorescence method. IGF-1Rß, PI3K, p-PI3K, Akt, p-Akt, Caspase-3, and cleaved Caspase-3 protein levels in the hippocampus were determined with Western blot. RESULTS: The behavioral despair mouse model findings showed that 9.1 and 40 g/kg of XYSEF both significantly shortened the immobility time of mice, suggesting that the effective dose range was 9.1-40 g/kg. Compared to the CUMS mouse model, XYSEF at 20 and 40 g/kg markedly increased the sucrose preference percentage in the SPT and grooming time in the ST, shortened the immobility time in the TST and the feeding latency in the NSFT, and reversed the downregulated IGF-1 content in mouse serum and hippocampus. In addition, XYSEF amplified the average optical density of Nissl bodies in the hippocampal CA3 region, promoted Brdu and DCX expression in DG, and diminished IGF-1Rß, p-PI3K/PI3K, p-Akt/Akt, and cleaved Caspase-3/Caspase-3 protein levels in the hippocampi of CUMS mice. CONCLUSION: XYSEF acted as an antidepressant in mice exhibiting CUMS-induced depression-like behaviors, possibly by promoting hippocampal neurogenesis, reducing neuronal apoptosis, and inhibiting the over-activation of the IGF-1Rß/PI3K/Akt pathway.


Subject(s)
Antidepressive Agents/pharmacology , Behavior, Animal/drug effects , Depression/drug therapy , Drugs, Chinese Herbal/pharmacology , Acetates , Animals , Apoptosis/drug effects , Disease Models, Animal , Hippocampus/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Neurogenesis/drug effects , Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptor, IGF Type 1/metabolism , Signal Transduction/drug effects
15.
Zhongguo Zhong Yao Za Zhi ; 46(21): 5683-5692, 2021 Nov.
Article in Chinese | MEDLINE | ID: mdl-34951222

ABSTRACT

The present study explored the potential mechanism of Jingfang Granules in relieving alcohol and protecting liver by network pharmacology and molecular docking and verified the effects and related pathways by animal experiments. The active components of Jingfang Granules were retrieved from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP). Targets of drugs and diseases were obtained from PubChem, Swiss Target Prediction and CTD. The common targets were uploaded to STRING to plot the protein-protein interaction(PPI) network. The core targets were screened out and the target organs were identified by Bio GPS and Metascape, followed by Gene Ontology(GO) analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analysis of common targets. The acute drunk mouse model was established and the effects of Jingfang Granules on serum ethanol level and the expression of proteins related to the phosphatidylinositol 3-kinase(PI3 K)/protein kinase B(Akt) signaling pathway in the liver tissue of mice were observed. A total of 187 active components of Jingfang Granules were obtained, including 47 common targets with alcoholic liver injury. GO enrichment analysis and KEGG pathway analysis showed that Jingfang Granules might play the role of relieving alcohol and protecting liver through the PI3 K-Akt signaling pathway. The drug-component-target and component-target-pathway networks revealed that the important active components of Jingfang Granules in relieving alcohol and protecting liver included quercetin, 5-O-methylvisamminol, glyasperin M, glyasperin B and hederagenin. Molecular docking showed that the active components had a good affinity with AKT1, EGFR, ESR1 and PTGS2. Experimental results showed that Jingfang Granules(15 and 10. 5 g·kg-1) could significantly reduce the content of serum ethanol in mice and up-regulate the protein expression ratios of p-PI3 K/PI3 K and p-Akt/Akt in the liver tissue. Jingfang Granules could relieve alcohol and protect liver through multi-component and multitarget, and the mechanism may be related to the activation of the PI3 K-Akt signaling pathway.


Subject(s)
Drugs, Chinese Herbal , Animals , Computational Biology , Drugs, Chinese Herbal/pharmacology , Ethanol , Liver , Medicine, Chinese Traditional , Mice , Molecular Docking Simulation , Network Pharmacology , Technology
16.
Dalton Trans ; 50(45): 16493-16498, 2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34734616

ABSTRACT

By facilitating electron transfer to the hydroxylase diiron center, MMOR-a reductase-serves as an essential component of the catalytic cycle of soluble methane monooxygenase. Here, the X-ray structure analysis of the FAD-binding domain of MMOR identified crucial residues and its influence on the catalytic cycle.


Subject(s)
Flavin-Adenine Dinucleotide/metabolism , Methylosinus/metabolism , Oxidoreductases/metabolism , Binding Sites , Catalysis , Crystallography, X-Ray , Electron Transport , Flavin-Adenine Dinucleotide/chemistry , Methylosinus/enzymology , Oxidoreductases/chemistry , Oxygenases/metabolism , Protein Conformation , Protein Domains
17.
Phytomedicine ; 93: 153798, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34673348

ABSTRACT

BACKGROUND: NLRP3 inflammasome activation and pyroptosis play an important role in myocardial ischemia/reperfusion injury (MI/RI). Cinnamomi ramulus (CR), is an important folk medicinal plant in China, which derived from the dried twig of Cinnamomum cassia (L.) Presl, has function of "warming and tonifying heart yang", and traditionally utilized to treat the cold, blood-cold amenorrhea, phlegm, edema, arthralgia, and palpitations as well as improve blood circulation. The aqueous extract of C. ramulus was reported to show significant therapeutic potential for treating MI/RI. Whereas, there are no previous investigations in China or abroad has reported the cardioprotective effects and underlying mechanism of the ethyl acetate extract of C. ramulus (CREAE) and its bioactive substance cinnamic acid (CA) in triggering NLRP3 inflammasome activation and subsequent pyroptosis. PURPOSE: The present study aimed to assess the cardioprotective function of CREAE and CA against the MI/RI in rats and involved the underlying mechanisms. METHODS: The MI/RI model was established in male SD rats by occlusion of the left anterior descending coronary artery for 30 min followed by reperfusion for 120 min, respectively. The rats were intragastrically administered with CREAE (74 and 37 mg/kg) and CA (45 mg/kg) for 7 successive days before vascular ligation. The cardioprotective effects of CREAE and CA against myocardial injury of rats were detected by HE staining, TTC staining, echocardiograms, and myocardial enzymes detections. Serum levels of inflammatory factors, such as IL-6, IL-1ß, and TNF-α, were analyzed by ELISA kits to evaluate the effects of CREAE and CA. The protein and gene expression levels of NLRP3 and the pyroptosis-related factors in heart tissue were conducted by western blot and RT-qPCR. RESULTS: Our results showed that CREAE and CA decrease myocardial infarct size and improve cardiac function, mitigate myocardial damage, and repress inflammatory response in rats after I/R. Mechanistically, our results revealed that CREAE and CA can dramatically suppress the activation of NLRP3 inflammasome and subsequent cardiomyocyte pyroptosis in myocardial tissues that as evidenced by downregulating the protein and gene expressions of NLRP3, ASC, IL-1ß, caspase-1, gasdermin D, and N-terminal GSDMD. CONCLUSIONS: Our data indicated that CREAE and CA may attenuate MI/RI through suppression of NLRP3 inflammasome and subsequent pyroptosis-related signaling pathways.


Subject(s)
Myocardial Reperfusion Injury , Pyroptosis , Acetates , Animals , Inflammasomes , Male , Myocardial Reperfusion Injury/drug therapy , NLR Family, Pyrin Domain-Containing 3 Protein , Rats , Rats, Sprague-Dawley
18.
J Tradit Chin Med ; 41(5): 695-705, 2021 10.
Article in English | MEDLINE | ID: mdl-34708627

ABSTRACT

OBJECTIVE: To investigate the underlying mechanism of the effect of Fengreqing oral liquid (, FOL) on wind-heat pattern (WHP). METHODS: In this study, we predicted the potential targets of FOL via the approach of network pharmacology and verified it by in vitro inflammation model. In the network pharmacology part, two strategies, namely the direct target search and the indirect one, were used to collect the target sets of FOL in WHP treatment. The enrichment analysis was carried out by David database and ClueGo plug-in in Cytoscape. Furthermore, the potential targets were mapped in the candidate pathways. In the verification experiment section, in vitro model of lipopolysaccharide (LPS) induced RAW 264.7 was used to confirm the predictive results in the network pharmacology part. RESULTS: Through the two screening strategies, a total of 141 non-repetitive intervention targets of FOL on WHP were obtained. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the intervention effect was mainly focused on the anti-inflammatory effect, and the Toll-like receptor signaling pathway was one of the most critical regulatory pathways. Further mapping analysis showed that phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT) signaling transfer might be the key part of regulating the concentration of inflammation mediators of FOL in the Toll-like receptor signaling pathway. In vitro experiment showed that FOL significantly reduced the levels of NO, IL-1, IL-6, and TNF-α produced by RAW264.7 induced by LPS. Further immunofluorescence found that this effect is related to the regulation of PI3K-AKT pathway activity by FOL. CONCLUSION: FOL can intervene in WHP by regulating the content of inflammatory mediators via the PI3K-AKT pathway.


Subject(s)
Drugs, Chinese Herbal , Phosphatidylinositol 3-Kinases , Drugs, Chinese Herbal/pharmacology , Hot Temperature , Humans , Network Pharmacology , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Wind
19.
Zhongguo Zhong Yao Za Zhi ; 46(18): 4800-4807, 2021 Sep.
Article in Chinese | MEDLINE | ID: mdl-34581091

ABSTRACT

This paper aimed to explore the anti-inflammatory effect of ethanol extract from Saposhnikoviae Radix in a lipopolysaccharide(LPS)-induced inflammation mouse model and its regulation of TLR4/NF-κB signaling pathway. The ethanol extract from Saposhnikoviae Radix was separated and purified on the macroporous adsorption resin and its main chemical components were identified by UPLC-QE/MS. The identification results showed that the top ten components of ethanol extract from Saposhnikoviae Radix were mainly chromones and coumarins. A mouse model of inflammation induced by intraperitoneal injection of LPS was used to investigate the anti-inflammatory effects of ethanol extract from Saposhnikoviae Radix after intragastric administration for seven successive days. Mice in all groups except for the control group were treated with intraperitoneal injection of LPS(0.015 g·kg~(-1)) one hour after the last administration, and twelve hours later, the blood was sampled and separated and the broncoalveolar lavage fluid(BALF) was collected. The levels of nitric oxide(NO), tumor necrosis factor-α(TNF-α), interleukin-6(IL-6), and interleukin-1ß(IL-1ß) in mouse serum and BALF were detected by ELISA. The harvested lung tissue was stained with hematoxylin-eosin(HE) for observing the pathological changes, followed by the detection of protein expression levels of related molecules in TLR4/NF-κB signaling pathway by Western blotting. The results showed that the ethanol extract from Saposhnikoviae Radix significantly ameliorated the pathological conditions in lung tissue of model mice, reversed the increase in NO, TNF-α, IL-6, and IL-1ß levels of mouse serum and BALF, down-regulated the protein expression levels of Toll-like receptor 4(TLR4), myeloid differentiation factor(MyD88), and phosphorylated nuclear transcription factor κB-p65/nuclear transcription factor κB-p65(P-NF-κB p65/NF-κB p65), and up-regulated the NF-κB inhibitory protein α(IκBα). The ethanol extract from Saposhnikoviae Radix exhibited a good anti-inflammatory effect in the LPS-induced acute inflammation muse model, which might be related to the inhibition of the activation of TLR4/NF-κB inflammatory signaling pathway. Chromones and coumarins have been proved to be the active components for its anti-inflammatory effects.


Subject(s)
Ethanol , Lipopolysaccharides , Animals , Anti-Inflammatory Agents , Inflammation/drug therapy , Lipopolysaccharides/toxicity , Mice , NF-kappa B/genetics , Plant Extracts
20.
Antiviral Res ; 193: 105143, 2021 09.
Article in English | MEDLINE | ID: mdl-34303748

ABSTRACT

Cepharanthine (CEP), a naturally occurring isoquinoline alkaloid extracted from the genus CEP of the Tetrandrine family, was reported to possess many biological activities such as anti-inflammatory, antitumor, antiviral, and immune-enhancing effects. Nevertheless, the underlying mechanisms of CEP against herpes simplex virus type 1 (HSV-1) are still elusive. In this study, we explored the anti-HSV effects and mechanisms of CEP in vitro. The results showed that CEP possessed a strong inhibitory effect against HSV-1 infection with the TC50 of 5.4 µg/mL, the IC50 of 0.835 µg/mL, and the TI of 6.47. Most importantly, CEP could promote the phosphorylation of STING, TBK1, and P62 and the expression of LC3II without induction of interferon by directly targeting the STING/TBK1/P62 signaling pathways. Electron microscopy showed that autophagy induced by CEP could degrade viral particles and cellular components. RT-PCR results revealed that a sharp reduction of large numbers of virus gene transcription in 16 h after CEP treatment. Furthermore, CEP also reduced the HSV-1 gB and gC transcription. In conclusion, one of the effects of CEP was to promote interferon-independent autophagy through STING mediated signaling.


Subject(s)
Antiviral Agents/pharmacology , Autophagy/drug effects , Benzylisoquinolines/pharmacology , Herpesvirus 1, Human/drug effects , Signal Transduction/drug effects , Herpes Simplex/drug therapy , Herpesvirus 1, Human/physiology , Humans , Inhibitory Concentration 50 , Membrane Proteins/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , RNA-Binding Proteins/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...