Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Life Sci ; 354: 122950, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39128821

ABSTRACT

Behçet's Disease (BD) is an intricate medical puzzle, captivating researchers with its enigmatic pathogenesis. This complex ailment, distinguished by recurrent mouth and genital lesions, eye irritation, and skin injuries, presents a substantial obstacle to therapeutic research. This review explores the complex interaction of microRNAs (miRNAs) with BD, highlighting their crucial involvement in the disease's pathophysiology. miRNAs, recognized for regulatory influence in diverse biological processes, hold a pivotal position in the molecular mechanisms of autoimmune diseases, such as BD. The exploration begins with examining miRNA biogenic pathways and functions, establishing a foundational understanding of their regulatory mechanisms. Shifting to the molecular landscape governing BD, the review highlights miRNA-mediated impacts on critical signaling pathways like Notch, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and protein kinase B (AKT)/mammalian target of rapamycin (mTOR), offering insights into intricate pathophysiological mechanisms. Dissecting the immunological landscape reveals the profound influence of miRNAs on BD, shedding light on the intricate modulation of immune responses and offering novel perspectives on disease etiology and progression. Beyond molecular intricacies, the review explores the clinical relevance of miRNAs in BD, emphasizing their potential as diagnostic and prognostic indicators. The discussion extends to the promising realm of miRNA-based therapeutic interventions, highlighting their potential in alleviating symptoms and altering disease progression. This comprehensive review, serving as a valuable resource for researchers, clinicians, and stakeholders, aims to decipher the intricate molecular tapestry of BD and explore the therapeutic potential of miRNAs.


Subject(s)
Behcet Syndrome , MicroRNAs , Behcet Syndrome/therapy , Behcet Syndrome/genetics , Behcet Syndrome/diagnosis , Humans , MicroRNAs/genetics , Signal Transduction , Animals , Biomarkers/metabolism
2.
Pathol Res Pract ; 251: 154880, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37832353

ABSTRACT

In recent years, microRNAs (miRNAs) have gained increased attention from researchers around the globe. Although it is twenty nucleotides long, it can modulate several gene targets simultaneously. Their mal expression is a signature of various pathologies, and they provide the foundation to elucidate the molecular mechanisms of each pathology. Among the debilitating central nervous system (CNS) disorders with a growing prevalence globally is the multiple sclerosis (MS). Moreover, the diagnosis of MS is challenging due to the lack of disease-specific biomarkers, and the diagnosis mainly depends on ruling out other disabilities. MS could adversely affect patients' lives through its progression, and only symptomatic treatments are available as therapeutic options, but an exact cure is yet unavailable. Consequently, this review hopes to further the study of the biological features of miRNAs in MS and explore their potential as a therapeutic target.


Subject(s)
MicroRNAs , Multiple Sclerosis , Humans , MicroRNAs/metabolism , Multiple Sclerosis/diagnosis , Multiple Sclerosis/genetics , Multiple Sclerosis/therapy , Drug Resistance, Neoplasm
3.
Pathol Res Pract ; 246: 154529, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37196470

ABSTRACT

Globally, esophageal cancer (EC) is the 6th leading cause of cancer-related deaths and the second deadliest gastrointestinal cancer. Multiple genetic and epigenetic factors, such as microRNAs (miRNAs), influence its onset and progression. miRNAs are short nucleic acid molecules that can regulate multiple cellular processes by regulating gene expression. Therefore, EC initiation, progression, apoptosis evasions, invasion capacity, promotion, angiogenesis, and epithelial-mesenchymal transition (EMT) enhancement are associated with miRNA expression dysregulation. Wnt/-catenin signaling, Mammalian target of rapamycin (mTOR)/P-gp, phosphoinositide-3-kinase (PI3K)/AKT/c-Myc, epidermal growth factor receptor (EGFR), and transforming growth factor (TGF)-ß signaling are crucial pathways in EC that are controlled by miRNAs. This review was conducted to provide an up-to-date assessment of the role of microRNAs in EC pathogenesis and their modulatory effects on responses to various EC treatment modalities.


Subject(s)
Esophageal Neoplasms , MicroRNAs , Humans , MicroRNAs/genetics , Esophageal Neoplasms/pathology , Wnt Signaling Pathway/genetics , Transforming Growth Factor beta/metabolism , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic
SELECTION OF CITATIONS
SEARCH DETAIL