Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Surg ; 274(2): e150-e159, 2021 08 01.
Article in English | MEDLINE | ID: mdl-31436549

ABSTRACT

BACKGROUND: Pathologic complete response (pCR) has been shown to be associated with favorable outcomes in breast cancer. Predictors of pCR could be useful in guiding treatment decisions regarding neoadjuvant therapy. The objective of this study was to evaluate cyclin E as a predictor of response to neoadjuvant chemotherapy in breast cancer. METHODS: Patients (n = 285) with stage II-III breast cancer were enrolled in a prospective study and received neoadjuvant chemotherapy with anthracyclines, taxanes, or combination of the two. Pretreatment biopsies from 190 patients and surgical specimens following chemotherapy from 192 patients were available for immunohistochemical analysis. Clinical and pathologic responses were recorded and associated with presence of tumor infiltrating lymphocytes, cyclin E, adipophilin, programmed cell death-ligand 1, and elastase staining and other patient, tumor and treatment characteristics. RESULTS: The pCR rate was significantly lower in patients with cytoplasmic cyclin E staining compared with those who had no cyclin E expression (16.1% vs 38.9%, P = 0.0005). In multivariable logistic regression analysis, the odds of pCR for patients who had cytoplasmic negative tumors was 9.35 times (P value < 0.0001) that compared with patients with cytoplasmic positive tumors after adjusting for ER, PR, and HER2 status. Cytoplasmic cyclin E expression also predicts long-term outcome and is associated with reduced disease free, recurrence free, and overall survival rates, independent of increased pretreatment tumor infiltrating lymphocytes. CONCLUSIONS: Cyclin E independently predicted response to neoadjuvant chemotherapy. Hence, its routine immunohistochemical analysis could be used clinically to identify those breast cancer patients expected to have a poor response to anthracycline/taxane-based chemotherapy.


Subject(s)
Breast Neoplasms/drug therapy , Cyclin E/metabolism , Adult , Aged , Anthracyclines/administration & dosage , Biomarkers, Tumor/metabolism , Biopsy , Breast Neoplasms/pathology , Breast Neoplasms/surgery , Chemotherapy, Adjuvant , Female , Humans , Middle Aged , Neoadjuvant Therapy , Neoplasm Staging , Predictive Value of Tests , Prospective Studies , Survival Rate , Taxoids/administration & dosage
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 2266-2269, 2020 07.
Article in English | MEDLINE | ID: mdl-33018459

ABSTRACT

This paper describes a method for deciphering major drivers of bacterial stress response using an empirically informed computational approach. We develop a working model of iron flux regulation and concomitant oxidative stress response in Escherichia coli. The integrated model is used to investigate the temporal effects of iron and hydrogen peroxide stress on bacterial growth and metabolism. We employ a sensitivity analysis platform and, using various measures, probe for major mechanistic drivers of the bacterial response to iron stress.


Subject(s)
Hydrogen Peroxide , Iron , Bacteria , Oxidation-Reduction , Oxidative Stress
3.
J Bacteriol ; 195(15): 3468-75, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23729650

ABSTRACT

The genome of the Philadelphia-1 strain of Legionella pneumophila, the causative organism of Legionnaires' disease, encodes two virulence-associated type 4 secretion systems (T4SSs), the Dot/Icm type 4B (T4BSS) and the Lvh type 4A (T4ASS). Broth stationary-phase cultures of most dot/icm mutants are defective in entry and evasion of phagosome acidification. However, those virulence defects can be reversed by incubating broth cultures of dot/icm mutants in water, termed water stress (WS). WS reversal requires the lvh T4ASS locus, suggesting an interaction between the two T4SSs in producing Legionella virulence phenotypes. In the current work, the loss of WS reversal in a dotA Δlvh mutant of strain JR32 was shown to be attributable to loss of the lvh virD4 gene, encoding the putative coupling protein of the T4ASS. Transformation of a dotA Δlvh mutant with virD4 also reversed entry and phagosome acidification defects in broth cultures. In addition, broth cultures of Δlvh and ΔvirD4 mutants, which were dot/icm(+), showed 5-fold and >6-fold increases in translocation of the Dot/Icm translocation substrates, proteins RalF and SidD, respectively. These data demonstrate that the Lvh T4ASS functions in both broth stationary-phase cultures conventionally used for infection and cultures exposed to WS treatment. Our studies in a dotA Δlvh mutant and in a dot/icm(+) background establish that VirD4 and the Lvh T4ASS contribute to virulence phenotypes and are consistent with independent functioning of Dot/Icm and Lvh T4SSs or functional substitution of the Lvh VirD4 protein for a component(s) of the Dot/Icm T4BSS.


Subject(s)
Bacterial Proteins/metabolism , Bacterial Secretion Systems , Legionella pneumophila/pathogenicity , Virulence Factors/metabolism , Animals , Cell Line , Gene Deletion , Genetic Complementation Test , Legionella pneumophila/genetics , Legionella pneumophila/metabolism , Macrophages/microbiology , Mice , Phagosomes/microbiology , Virulence , Virulence Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...