Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Microbiol ; 128(6): 1703-1719, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31950553

ABSTRACT

AIMS: Dickeya species are high consequence plant pathogenic bacteria; associated with potato disease outbreaks and subsequent economic losses worldwide. Early, accurate and reliable detection of Dickeya spp. is needed to prevent establishment and further dissemination of this pathogen. Therefore, a multiplex TaqMan qPCR was developed for sensitive detection of Dickeya spp. and specifically, Dickeya dianthicola. METHODS AND RESULTS: A signature genomic region for the genus Dickeya (mglA/mglC) and unique genomic region for D. dianthicola (alcohol dehydrogenase) were identified using a whole genome-based comparative genomics approach. The developed multiplex TaqMan qPCR was validated using extensive inclusivity and exclusivity panels, and naturally/artificially infected samples to confirm broad range detection capability and specificity. Both sensitivity and spiked assays showed a detection limit of 10 fg DNA. CONCLUSION: The developed multiplex assay is sensitive and reliable to detect Dickeya spp. and D. dianthicola with no false positives or false negatives. It was able to detect mixed infection from naturally and artificially infected plant materials. SIGNIFICANCE AND IMPACT OF THE STUDY: The developed assay will serve as a practical tool for screening of propagative material, monitoring the presence and distribution, and quantification of target pathogens in a breeding programme. The assay also has applications in routine diagnostics, biosecurity and microbial forensics.


Subject(s)
Gammaproteobacteria/isolation & purification , Plant Diseases/microbiology , Dickeya , Gammaproteobacteria/genetics , Genome, Bacterial/genetics , Genomics , Limit of Detection , Multiplex Polymerase Chain Reaction , Solanum tuberosum/microbiology , Species Specificity
2.
Phytopathology ; 109(4): 551-559, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30303769

ABSTRACT

Huanglongbing (HLB) is a highly destructive citrus disease and is associated with a nonculturable bacterium, 'Candidatus Liberibacter asiaticus'. 'Ca. L. asiaticus' in the United States was first found in Florida in 2005 and is now endemic there. In California, 'Ca. L. asiaticus' was first detected in Hacienda Heights in Los Angeles County in 2012 and has now been detected in multiple urban locations in southern California. Knowledge of 'Ca. L. asiaticus' strain diversity in California is important for HLB management. In this study, genomic diversity among 10 'Ca. L. asiaticus' strains from six California locations were analyzed using a next-generation sequencing (NGS) (Illumina MiSeq and HiSeq) approach. Draft genome sequences of 'Ca. L. asiaticus' strains were assembled. Sequences of the 16S ribosomal RNA gene and nrdB confirmed 'Ca. L. asiaticus' identity. Prophages were detected in all 'Ca. L. asiaticus' strains. The California 'Ca. L. asiaticus' strains formed four prophage typing groups (PTGs): PTG1, with type 1 prophage only (strains from Anaheim, San Gabriel, and Riverside); PTG2, with type 2 prophage only (strains from Hacienda Heights); PTG1-3, with both type 1 and 3 prophages (a strain from Cerritos); and PTG1-2, with both type 1 and type 2 prophages (a strain from La Habra). Analyses of the terL sequence showed that all California 'Ca. L. asiaticus' strains were not introduced from Florida but likely from locations in Asia. Miniature inverted-repeat transposable elements were found in all 'Ca. L. asiaticus' strains, yet, a jumping-out event was detected in the 'Ca. L. asiaticus' strain from Cerritos. Altogether, this study demonstrated that the NGS approach focusing on prophage variation was sensitive and effective in revealing diversity of 'Ca. L. asiaticus' strains in California.


Subject(s)
Genetic Variation , Prophages , Rhizobiaceae , Asia , California , Citrus , Florida , Plant Diseases , Prophages/genetics , Rhizobiaceae/genetics
3.
Genome Announc ; 6(25)2018 Jun 21.
Article in English | MEDLINE | ID: mdl-29930061

ABSTRACT

The draft genome sequence of "Candidatus Liberibacter asiaticus" strain TX1712, obtained from a Texas citrus tree, is reported here. Strain TX1712 has a draft genome size of 1,203,333 bp, a G+C content of 36.4%, 1,230 predicted open reading frames, and 41 RNAs and comprises 97.4% of the psy62 reference genome.

4.
Genome Announc ; 6(11)2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29545295

ABSTRACT

Here, we report two annotated draft genome sequences of Dickeya dianthicola isolates from potatoes collected in Delaware and West Virginia. The genomes of strains DE440 and WV516 show 99% similarity to each other and 96% and 95% similarity to the European strains IPO 980 and RNS04.9, respectively.

5.
Phytopathology ; 107(11): 1312-1321, 2017 11.
Article in English | MEDLINE | ID: mdl-28677478

ABSTRACT

Bacterial leaf streak of corn (Zea mays) recently reached epidemic levels in three corn-growing states, and has been detected in another six states in the central United States. Xanthomonas vasicola was identified as the causal agent of this disease. A multilocus sequence alignment of six housekeeping genes and comparison of average nucleotide identity from draft genome sequence were used to confirm phylogenetic relationships and classification of this bacteria relative to other X. vasicola strains. X. vasicola isolates from Nebraska and South Africa were highly virulent on corn and sugarcane and less virulent on sorghum but caused water-soaking symptoms that are typical of X. vasicola infection on the leaves of all three hosts. Based on host range and phylogenetic comparison, we propose the taxonomic designation of this organism to X. vasicola pv. vasculorum ( Cobb 1894 ) comb. nov. Polymerase chain reaction-based diagnostic assays were developed that distinguish X. vasicola pv. vasculorum and X. vasicola pv. holcicola from each other and from other Xanthomonas spp.


Subject(s)
Plant Diseases/microbiology , Xanthomonas/genetics , Xanthomonas/isolation & purification , Zea mays/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Phylogeny , United States
6.
Plant Dis ; 97(2): 283, 2013 Feb.
Article in English | MEDLINE | ID: mdl-30722341

ABSTRACT

Huanglongbing (HLB), also known as citrus greening, is one of the most destructive citrus diseases worldwide and is seen as a major threat to the multimillion dollar citrus industry in California. The vector of the two bacterial species associated with this disease, Candidatus Liberibacter asiaticus and Ca. L. americanus, is the Asian citrus psyllid (ACP), Diaphorina citri (4). ACP was detected in California in August of 2008 and has since been detected in nine counties in southern California. As part of a long term survey and testing program for the ACP carrying the HLB associated bacteria, groups of ACP nymphs and adults were submitted to the Jerry Dimitman Citrus Research Board/Citrus Pest and Disease Prevention Program Laboratory in Riverside, CA. In March 2012, DNA extracted using the Qiagen MagAttract 96 DNA plant kit (QIAGEN Inc., 27220 Turnberry Lane, Suite 200, Valencia, CA 91355) from a group of three ACP adults tested positive for Ca. L. asiaticus with the real-time PCR assay developed by Li et al. (4). ACP adults were collected from a residential citrus tree located in the Hacienda Heights area of Los Angeles County, California. The approximately 1.8 meter tall lemon tree had 23 graft unions, primarily of lemon (Citrus × meyeri) and pomelo (Citrus maxima) varieties. The tree was unthrifty, with yellow shoots and chlorotic leaves. Symptoms on the lemon and pomelo leaves included asymmetrical blotchy mottling, yellowing, and corking of the leaf veins, with the blotchy mottle more prominent in the pomelo leaves. Pomelo leaves appeared crinkled along the thickened veins. Lemon leaves had yellow veins and a few had islands of green tissue completely surrounded by yellow tissue. The entire tree was removed, cut into sections, bagged, and transported to the CDFA Plant Pest Diagnostics Lab for analysis. Two hundred milligrams of petiole and midrib tissue from leaves apical to each graft union was collected, and DNA from each sample was extracted using the Qiagen DNeasy plant mini kit. DNA extracted from both lemon and pomelo leaves tested positive for Ca. L. asiaticus using real-time PCR (4). A 1,160-bp fragment of the 16S ribosomal RNA gene was amplified from the insect and plant DNA extracts using conventional PCR with primers Ol1 and OI2c (2). A 703-bp fragment of the ß-operon gene was amplified from the insect and plant extracts with primers A2 and J5 (1). The 16S rDNA fragments from the insect and plant respectively (GenBank Accession Nos. JX430434 and JX455745) and the ß-operon fragments (JX430435 and JX455746) showed 100% identity with the corresponding regions of Ca. L. asiaticus (CP001677) strain psy 62. Our 16S rDNA sequence showed 98% identity with Ca. L. africanus (EU921620), 97% identity with Ca. L. solanacearum (HM246509), and 96% with Ca. L. americanus (FJ036892). In response to the detection of HLB, a 241 km2 quarantine area around the detection site was established. Surveys for ACP and symptomatic host plants within the HLB quarantine area are ongoing. To date, there have been no additional positive detections. In the United States, HLB was first detected in Florida in 2005 (4) and in Texas in January of 2012 (3). To our knowledge, this is the first confirmed report of Ca. L. asiaticus associated with HLB in California. References: (1) A. Hocquellet et al. Mol. Cell. Probes 13:373, 1999. (2) S. Jagoueix et al. Mol. Cell. Probes 10:43, 1996. (3) M. Kunta et al. Phytopathology 102:S4.66, 2012. (4) W. Li et al. J. Microbiol. Methods 66:104, 2006.

7.
Plant Dis ; 96(8): 1225, 2012 Aug.
Article in English | MEDLINE | ID: mdl-30727070

ABSTRACT

In March 2010, citrus black spot symptoms were observed on sweet orange trees in a grove near Immokalee, FL. Symptoms observed on fruit included hard spot, cracked spot, and early virulent spot. Hard spot lesions were up to 5 mm, depressed with a chocolate margin and a necrotic, tan center, often with black pycnidia (140 to 200 µm) present. Cracked spot lesions were large (15 mm), dark brown, with diffuse margins and raised cracks. In some cases, hard spots formed in the center of lesions. Early virulent spot lesions were small (up to 7 mm long), bright red, irregular, indented, and often with many pycnidia. In addition, small (2 to 3 mm), elliptical, reddish brown leaf lesions with depressed tan centers were observed on some trees with symptomatic fruit. Chlorotic halos appeared as they aged. Most leaves had single lesions, occasionally up to four per leaf. Tissue pieces from hard spots and early virulent spots were placed aseptically on potato dextrose agar (PDA), oatmeal agar, or carrot agar and incubated with 12 h of light and dark at 24°C. Cultures that grew colonies within a week were discarded. Fourteen single-spore cultures were obtained from the isolates that grew slower than the Guignardia mangiferae reference cultures, although pycnidia formed more rapidly in the G. mangiferae cultures (1). No sexual structures were observed. Cultures on half-PDA were black and cordlike with irregular margins with numerous pycnidia, often bearing white cirrhi after 14 days. Conidia (7.1 to 7.8 × 10.3 to 11.8 µm) were hyaline, aseptate, multiguttulate, ovoid with a flattened base surrounded by a hyaline matrix (0.4 to 0.6 µm) and a hyaline appendage on the rounded apex, corresponding to published descriptions of G. citricarpa (anomorph Phyllosticta citricarpa) (1). A yellow pigment was seen in oatmeal agar surrounding G. citricarpa, but not G. mangiferae colonies as previously reported (1,2). DNA was extracted from lesions and cultures and amplified with species-specific primers (2). DNA was also extracted from G. mangiferae and healthy citrus fruit. The G. citricarpa-specific primers produced a 300-bp band from fruit lesions and pure cultures. G. mangiferae-specific primers produced 290-bp bands with DNA from G. mangiferae cultures. The internally transcribed spacer (ITS) of the rRNA gene, translation-elongation factor (TEF), and actin gene regions were sequenced from G. citricarpa isolates and deposited in GenBank. These sequences had 100% homology with G. citricarpa ITS sequences from South Africa and Brazil, 100% homology with TEF, and 99% homology with actin of a Brazilian isolate. Pathogenicity tests with G. citricarpa were not done because the organism infects immature fruit and has an incubation period of at least 6 months (3). In addition, quarantine restrictions limit work with the organism outside a contained facility. To our knowledge, this is the first report of black spot in North America. The initial infested area was ~57 km2. The disease is of great importance to the Florida citrus industry because it causes serious blemishes and significant yield reduction, especially on the most commonly grown 'Valencia' sweet orange. Also, the presence of the disease in Florida may affect market access because G. citricarpa is considered a quarantine pathogen by the United States and internationally. References: (1) R. P. Baayen et al. Phytopathology 92:464, 2002. (2) N. A. Peres et al. Plant Dis. 91:525, 2007 (3) R. F. Reis et al. Fitopath Bras. 31:29, 2006.

8.
Phytopathology ; 93(10): 1233-9, 2003 Oct.
Article in English | MEDLINE | ID: mdl-18944322

ABSTRACT

ABSTRACT A serious vine decline of cucurbits known as cucurbit yellow vine disease (CYVD) is caused by rod-shaped bacteria that colonize the phloem elements. Sequence analysis of a CYVD-specific polymerase chain reaction (PCR)-amplified 16S rDNA product showed the microbe to be a gamma-proteobacterium related to the genus Serratia. To identify and characterize the bacteria, one strain each from watermelon and zucchini and several noncucurbit-derived reference strains were subjected to sequence analysis and biological function assays. Taxonomic and phylogenetic placement was investigated by analysis of the groE and 16S rDNA regions, which were amplified by PCR and directly sequenced. For comparison, eight other bacterial strains identified by others as Serratia spp. also were sequenced. These sequences clearly identified the CYVD strains as Serratia marcescens. However, evaluation of metabolic and biochemical features revealed that cucurbit-derived strains of S. marcescens differ substantially from strains of the same species isolated from other environmental niches. Cucurbit strains formed a distinct cluster, separate from other strains, when their fatty acid methyl ester profiles were analyzed. In substrate utilization assays (BIOLOG, Vitek, and API 20E), the CYVD strains lacked a number of metabolic functions characteristic for S. marcescens, failing to catabolize 25 to 30 compounds that were utilized by S. marcescens reference strains. These biological differences may reflect gene loss or repression that occurred as the bacterium adapted to life as an intracellular parasite and plant pathogen.

9.
Biochem Genet ; 34(7-8): 269-86, 1996 Aug.
Article in English | MEDLINE | ID: mdl-8894049

ABSTRACT

Genetic variations in the plant pathogen, Spiroplasma citri strain BR3, were characterized through physical genome mapping of the original isolate, BR3-3X, and two derivatives, BR3-T and BR3-G, obtained after several years of different maintenance conditions. BR3-T was transmitted from plant to plant via its natural insect vector, the leafhopper Circulifer tenellus, while BR3-G was maintained only in plants by periodic grafting and has lost its ability to be insect transmitted. By pulsed field gel electrophoresis (PFGE) analysis and DNA hybridization, extensive changes in chromosomal DNA restriction patterns relative to the parent, BR3-3X, were observed in both BR3-T and BR3-G, each of which also had a larger genome size than the parent line. Genetic organization was relatively conserved between BR3-T and BR3-3X. In contrast, a large chromosomal inversion and deletions of approximately 10 kb near each of the inversion borders were observed in BR3-G. One of the deletions, which included several possibly functional genes, was closely linked to a SpV1-related transposase gene. The locations of the deletion borders were also determined. The results of this study demonstrated remarkable genome instability of spiroplasmas.


Subject(s)
Chromosome Aberrations , Spiroplasma/genetics , Amino Acid Sequence , Chromosomes, Bacterial , Cloning, Molecular , DNA, Bacterial , Electrophoresis, Gel, Pulsed-Field , Genetic Variation , Genome, Bacterial , Molecular Sequence Data , Restriction Mapping , Sequence Alignment , Sequence Deletion
SELECTION OF CITATIONS
SEARCH DETAIL
...