Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 584
Filter
1.
Scientifica (Cairo) ; 2024: 4373987, 2024.
Article in English | MEDLINE | ID: mdl-39238607

ABSTRACT

Drought is one of the foremost devastating abiotic stresses reported for rice crops. To improve the productivity of rice, diversity is being enlarged by induced mutation using a source of gamma rays. But this type of mutation rarely results in fruitful products because the chances of getting the desired mutant are very low. The present study aimed to evaluate the rice mutants against drought or osmotic stress. In this study, three experiments were conducted that comprised of seventy-one mutants originating from different doses of gamma rays (Cs137) along with parent RICF-160 and commercial variety (Kainat) were tested. In the first experiment, germination and seedling attributes were calculated under control and osmotic stress conditions created by using 16% (0.6 MPa) polyethylene glycol (PEG-6000). Results revealed that all the mutants exhibited significant (p < 0.01) responses to PEG-induced osmotic stress. Principal component biplot analysis (PCBA) revealed the first seventeen cumulative PCs with eigenvalues >1 contributed 88%. It was noted that the germination percentage (GP), germination rate (GR), coefficient velocity of germination (CVG), and seed vigor (SV) contributed maximum and positively in PC1. Results showed the highest germination percentage (GP) at 48 hrs in mutant NMSF-11 (88.9%) followed by NMSf-38 (73.3%). Similarly, the germination rate (GR) and coefficient velocity of germination (CVG) were measured highest in NMSF-11 (9.7 and 118.1%), respectively. In stress conditions, the mutants NMSF-35 and NMSF-36 depicted the highest GP, GR, and CVG. The maximum seed vigor (SV), shoot length (SL), root length (RL), and fresh weight (FW) were observed in mutants NMSF-50 and NMSF-51 under both conditions, whereas the mutants NMSF-59, NMSF-60, NMSF-64, and NMSF-67 showed lower values for SV, SL, RL, and FW. In the second experiment, a field trial was conducted at the Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, in two control and stress sets. A bit different trend was observed among all mutants for agronomic parameters under both conditions. In the third experiment, biochemical profiling was done in Marker Assisted Breeding (MAB) Lab-1, Plant Breeding and Genetics Division. A significant variation was seen in enzymatic antioxidants and chlorophyll content in both control and stress conditions. Under control conditions, the ascorbate peroxidase (APX) content was observed higher in mutant NMSF-49 (106.07 Units/g. f. wt.). In comparison with the stress, the ascorbate peroxidase activity was higher in NMSF-41 (82.34 Units/g. f. wt.). Catalase (CAT) activity was observed maximum in NMSF-29 (17.54 Units/g. f. wt.) and NMSF-40 (14.17 Units/g. f. wt.) under control and stress conditions, respectively. Peroxidase (POD) activity was observed maximum in NMSF-51 (22.55 Units/g. f. wt. and 10.84 Units/g. f. wt.) under control and stress conditions, respectively. In conclusion, to fit in the changing climate conditions for resilient rice crop production, the promising mutant lines may be used to transfer the desirable drought-tolerant/drought-resistant genes in rice germplasm.

2.
Sci Rep ; 14(1): 22080, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39333224

ABSTRACT

The study investigates the interplay of land use dynamics and climate change on the hydrological regime of the Ravi River using a comprehensive approach integrating Geographic Information System (GIS), remote sensing, and hydrological modeling at the catchment scale. Employing the Soil and Water Assessment Tool (SWAT) model, simulations were conducted to evaluate the hydrological response of the Ravi River to both current conditions and projected future scenarios of land use and climate change. This study differs from previous ones by simulating future land use and climate scenarios, offering a solid framework for understanding their impact on river flow dynamics. Model calibration and validation were performed for distinct periods (1999-2002 and 2003-2005), yielding satisfactory performance indicators (NSE, R2, PBIAS = 0.85, 0.83, and 10.01 in calibration and 0.87, 0.89, and 7.2 in validation). Through supervised classification techniques on Landsat imagery and TerrSet modeling, current and future land use maps were generated, revealing a notable increase in built-up areas from 1990 to 2020 and projections indicating further expansion by 31.7% from 2020 to 2100. Climate change projections under different socioeconomic pathways (SSP2 and SSP5) were derived for precipitation and temperature, with statistical downscaling applied using the CMhyd model. Results suggest substantial increases in precipitation (10.9 - 14.9%) and temperature (12.2 - 15.9%) across the SSP scenarios by the end of the century. Two scenarios, considering future climate conditions with current and future land use patterns, were analyzed to understand their combined impact on hydrological responses. In both scenarios, inflows to the Ravi River are projected to rise significantly (19.4 - 28.4%) from 2016 to 2100, indicating a considerable alteration in seasonal flow patterns. Additionally, historical data indicate a concerning trend of annual groundwater depth decline (0.8 m/year) from 1996 to 2020, attributed to land use and climate changes. The findings underscore the urgency for planners and managers to incorporate climate and land cover considerations into their strategies, given the potential implications for water resource management and environmental sustainability.

3.
Front Immunol ; 15: 1400308, 2024.
Article in English | MEDLINE | ID: mdl-39234242

ABSTRACT

Tropical theileriosis is a lymphoproliferative disease caused by Theileria annulata and is transmitted by Ixodid ticks of the genus Hyalomma. It causes significant losses in livestock, especially in exotic cattle. The existing methods for controlling it, chemotherapeutic agents and a vaccine based on an attenuated schizont stage parasite, have several limitations. A promising solution to control this disease is the use of molecular vaccines based on potential immunogenic proteins of T. annulata. For this purpose, we selected five antigenic sequences of T. annulata, i.e. SPAG-1, Tams, TaSP, spm2, and Ta9. These were subjected to epitope prediction for cytotoxic T lymphocytes, B-cells, and helper T lymphocytes. CTL and B-cell epitopes with a higher score whereas those of HTL with a lower score, were selected for the construct. A single protein was constructed using specific linkers and evaluated for high antigenicity and low allergenicity. The construct was acidic, hydrophobic, and thermostable in nature. Secondary and tertiary structures of this construct were drawn using the PSIPRED and RaptorX servers, respectively. A Ramachandran plot showed a high percentage of residues in this construct in favorable, allowed, and general regions. Molecular docking studies suggested that the complex was stable and our construct could potentially be a good candidate for immunization trials. Furthermore, we successfully cloned it into the pET-28a plasmid and transformed it into the BL21 strain. A restriction analysis was performed to confirm the transformation of our plasmid. After expression and purification, recombinant protein of 49 kDa was confirmed by western blotting. An ELISA detected increased specific antibody levels in the sera of the immunized animals compared with the control group, and flow cytometric analysis showed a stronger cell-mediated immune response. We believe our multi-epitope recombinant protein has the potential for the large-scale application for disease prevention globally in the bovine population. This study will act as a model for similar parasitic challenges.


Subject(s)
Immunity, Cellular , Immunity, Humoral , Recombinant Proteins , Theileria annulata , Theileriasis , Theileria annulata/immunology , Theileria annulata/genetics , Animals , Cattle , Theileriasis/immunology , Theileriasis/parasitology , Theileriasis/prevention & control , Recombinant Proteins/immunology , Recombinant Proteins/genetics , Epitopes, T-Lymphocyte/immunology , Epitopes, B-Lymphocyte/immunology , Protozoan Vaccines/immunology , Protozoan Proteins/immunology , Protozoan Proteins/genetics , Computer Simulation , Antigens, Protozoan/immunology , Antigens, Protozoan/genetics , Antibodies, Protozoan/immunology , Antibodies, Protozoan/blood
4.
Angiology ; : 33197241273433, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39295517

ABSTRACT

Patients with lower socioeconomic status (SES) have poorer outcomes following acute myocardial infarction (AMI) than patients with higher SES; however, how sex modifies socioeconomic differences is unclear. Using the United Kingdom (UK) Myocardial Ischaemia National Audit Project (MINAP) registry, alongside Office of National Statistics (ONS) mortality data, we analyzed 736,420 AMI patients between 2005 and 2018, stratified by Index of Multiple Deprivation (IMD) score Quintiles (most affluent [Q1] to most deprived [Q5]). There was no significant difference in probability of in-hospital mortality in our adjusted model according to sex. The probability of 30-day mortality in our adjusted model was similar between men and women throughout Quintiles, ((Q5; Men 7.6%; 95% CI 7.3-7.8% (P < .001), Women; 7.0%; 95% CI 6.8-7.3%, P < .001)) ((Q1; Men 7.1%; 95% CI 6.8-7.4%, P < .001, Women; 6.9%; 95% CI 6.6-7.1%, P < .001)). The probability of one-year mortality in our adjusted model was higher in men throughout all Quintiles (Q1; Men 15.0%; 95% CI 14.8-15.6%), P < .001, Women; 14.5%; 95% CI 14.2-14.9%, P < .001) (Q5; Men 16.9%; 95% CI 16.5-17.3%, P < .001, Women; 15.5%; 95% CI 15.1-15.9 by %, P < .001). Overall, female sex did not significantly influence the effect of deprivation on AMI processes of care and outcomes.

5.
Exp Appl Acarol ; 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39271544

ABSTRACT

Hyalomma anatolicum is a tick of significant one-health importance due to its role as a vector for various pathogens affecting humans, animals and the environment, such as Theileria annulata, which causes tropical theileriosis in cattle, leading to severe economic losses. When infected with pathogens like T. annulata, the salivary glands of H. anatolicum undergo gene expression changes, secrete modified proteins and activate immune responses, all of which facilitate pathogen survival and transmission by modulating the host immune response and optimizing conditions for pathogen development. Understanding these responses is crucial for developing control strategies for tick-borne diseases. To understand the interaction between H. anatolicum and T. annulata, we performed a differential gene expression analysis of H. anatolicum salivary glands. An average of approximately 25 million raw sequencing reads were generated in each replicate using Illumina Sequencing. The sequenced reads were de novo assembled and the assembled transcriptome yielded approximately 50,231 non-redundant transcripts after clustering with CD-HIT using a sequence identity of 95% and alignment coverage of 90%. The assembly quality was evaluated with BUSCO analysis and found to be 86% complete using the Arachnida dataset and then blasted against non-redundant protein sequence database from NCBI followed by counting of reads and differential expression analysis. Overall, around 2400 and 400 genes were found differentially expressed with logFC > 1 and logFC > 2 respectively at FDR < 0.05. Top up-regulated genes included Calpain, Papilin, Neprilysin, and Ankyrin repeat-containing protein. Top down-regulated genes included Scoloptoxin, and Selenoprotein S and other uncharacterized proteins. Many other up-regulated proteins with high significance were uncharacterized suggesting room for further H. anatolicum functional and structural characterization studies. To our best knowledge, this is the first study of H. anatolicum sialotranscriptome which greatly contributes to sialotranscriptome information not only as sequence database but also indicates the potential targets for development of vaccine against ticks and transmission-blocking vaccines against T. annulata.

6.
Heliyon ; 10(14): e33922, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39104476

ABSTRACT

Cs2BiAgI6 is a lead-free inorganic perovskite material exhibits exceptional photoelectric characteristics and great environmental stability. HTL/Cs2BiAgI6is/ETLs solar cells was investigated numerically by using SCAPS 1-D Capacitance Simulator. IGZO, TiO2, WO3, MoO3, and SnO2 have been chosen as ETLs, while CuO, CuI, and MoO3 are as HTLs. The values of electrical parameters were calculated as function of thickness of the absorber layer, ETLs, HTLs, interface defect densities, doping densities, and working temperature. Comparative study shows that best configuration of obtain solar cell is MoO3/Cs2BiAgI6/IGZO. The obtain value of Jsc, Voc, FF and PCE are 23.80 mA/cm2, 1.193 V, 83.46 %, 23.711 % respectively. The value of quantum efficiency is 80-90 % in the range of 350-750 nm. These results will open the door for the widespread use of stable and environmentally friendly perovskite solar cells by providing theoretical recommendations for high performance of Cs2BiAgI6 based photovoltaic solar cells (PSCs).

7.
J Cancer Allied Spec ; 10(2): 617, 2024.
Article in English | MEDLINE | ID: mdl-39156943

ABSTRACT

Introduction: RAD51D has been reported as a breast cancer (BC) and ovarian cancer (OC) predisposition gene, particularly among Caucasian populations. We studied the prevalence of RAD51D variants in Pakistani BC/OC patients. Materials and Methods: In total, 371 young or familial BC/OC patients were thoroughly analyzed for RAD51D sequence variants using denaturing high-performance liquid chromatography pursued by DNA sequencing of differentially eluted amplicons. We also assessed the pathogenic effects of novel variants using in-silico algorithms. All detected RAD51D variants were investigated in 400 unaffected controls. Results: No pathogenic RAD51D variant was detected. However, we identified nine unique heterozygous variants. Of these, two missense variants (p.Pro10Leu and p.Ile311Asn) and one intronic variant (c.481-26_23delGTTC) were classified as in silico-predicted variants of uncertain significance, with a frequency of 0.8% (3/371). The p.Pro10Leu variant was detected in a 28-year-old female BC patient of Punjabi ethnic background, whose mother and maternal cousin had BCs at ages 53 and 40, respectively. This variant was also detected in 1/400 (0.25%) healthy controls, where the control subject's daughter had acute lymphoblastic leukemia. The p.Ile311Asn variant was identified in a female BC patient at age 29 of Punjabi ethnicity and in 1/400 (0.25%) healthy controls, where the control subject's daughter had Hodgkin's disease at age 14. A novel intronic variant, c.481-26_-23delGTTC, was found in a 30-year-old Punjabi female BC patient but not in 400 healthy controls. Conclusion: No pathogenic RAD51D variant was identified in the current study. Our study data suggested a negligible association of RAD51D variants with BC/OC risk in Pakistani women.

8.
Food Res Int ; 192: 114722, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147546

ABSTRACT

Peanut protein isolate (PPI) has high nutritional value, but its poor function limits its application in the food industry. In this study, peanut protein isolate was modified by enzymatic hydrolysis combined with glycation. The structure, emulsification and interface properties of peanut protein isolate hydrolysate (HPPI) and dextran (Dex) conjugate (HPPI-Dex) were studied. In addition, the physicochemical properties, rheological properties, and stability of the emulsion were also investigated. The results showed that the graft degree increased with the increase of Dex ratio. Fourier transform infrared spectroscopy (FTIR) confirmed that the glycation of HPPI and Dex occurred. The microstructure showed that the structure of HPPI-Dex was expanded, and the molecular flexibility was enhanced. When the ratio of HPPI to Dex was 1:3, the emulsifying activity and the interface pressure of glycated HPPI reached the highest value, and the emulsifying activity (61.08 m2/g) of HPPI-Dex was 5.28 times that of PPI. The HPPI-Dex stabilized emulsions had good physicochemical properties and rheological properties. In addition, HPPI-Dex stabilized emulsions had high stability under heat treatment, salt ion treatment and freeze-thaw cycle. According to confocal laser scanning microscopy (CLSM), the dispersion of HPPI-Dex stabilized emulsions was better after 28 days of storage. This study provides a theoretical basis for developing peanut protein emulsifier and further expanding the application of peanut protein in food industry.


Subject(s)
Arachis , Dextrans , Emulsions , Plant Proteins , Rheology , Emulsions/chemistry , Arachis/chemistry , Hydrolysis , Dextrans/chemistry , Plant Proteins/chemistry , Glycosylation , Spectroscopy, Fourier Transform Infrared , Emulsifying Agents/chemistry , Protein Hydrolysates/chemistry
9.
Heliyon ; 10(15): e35261, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39161824

ABSTRACT

In this research, Aloe Vera Gel (AVG) was incorporated into Unsaturated Polyester Resin (UPR) with jute-cotton union fabric to fabricate partially biodegradable composites. These composites were fabricated using a hand lay-up technique and characterized using Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetry Analysis (TGA), thermal conductivity measurements, water absorption tests, degradation assessments, cracking tests, and Universal Testing Machine (UTM) analysis. The study found that increasing the percentage of AVG in the composites led to a decrease in thermal conductivity, indicating improved insulation properties. Samples reinforced with AVG showed enhanced resistance to damage from iron nails, with reduced scratching and fiber displacement observed. However, the addition of AVG resulted in decreased thermal, mechanical, and water resistance properties compared to composites without AVG. FTIR analysis demonstrated interactions between AVG and the matrix materials. In degradation tests, composites subjected to an alkali environment (PH = 11.96) showed the highest weight reduction (2.22 %) compared to those without AVG. Similarly, composites buried in soil exhibited greater weight loss (2.38 %) than their counterparts lacking AVG. Overall, the developed composite's reduced heat transfer rate suggests its potential application as an insulating material in environments such as rural poultry housing and the automotive industry.

10.
Int J Med Mushrooms ; 26(9): 65-76, 2024.
Article in English | MEDLINE | ID: mdl-39093402

ABSTRACT

To study and compare the morphology of the phellinoid Agaricomycetes strains and find other strategies to improve Phellinus spp. growth and metabolism. In this study, the morphological characteristics of four Phellinus igniarius strains (phellinoid Agaricomycetes) were observed under a light microscope. The exudates from these fungi were observed using light microscopy, scanning electron microscopy (SEM), and energy-dispersive spectrometry (EDS). The exudates were initially transparent with a water-like appearance, and became darker with time at neutral pH. Microscopy of air-dried exudates revealed regular shapes and crystals. Cl- (chloride) and K+ were the two key elements analyzed using EDS. Polyphenol oxidase (POD), catalase (CAT), and laccase activities were detected in mycelia from each of the four Phellinus strains. The K+ content of the three strains was higher than that of the wild strain. Cl- content correlated negatively with that of K+. Laccase activities associated with each mycelia and its corresponding media differed under cold and contaminated conditions.


Subject(s)
Basidiomycota , Laccase , Microscopy, Electron, Scanning , Mycelium , Laccase/metabolism , Basidiomycota/enzymology , Basidiomycota/chemistry , Mycelium/chemistry , Catalase/metabolism , Catechol Oxidase/metabolism , Potassium/metabolism , Chlorides/metabolism
11.
J Am Heart Assoc ; 13(16): e032671, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39119984

ABSTRACT

BACKGROUND: A growing population of patients with chronic kidney disease (CKD) presents with non-ST-segment-elevation myocardial infarction, although little is known about their longer-term mortality. METHODS AND RESULTS: Using the MINAP (Myocardial Ischaemia National Audit Project) registry, linked to Office for National Statistics mortality data, we analyzed 363 559 UK patients with non-ST-segment-elevation myocardial infarction, with or without CKD. Cox regression models were fitted, adjusting for baseline demographics. Compared with patients without CKD, patients with CKD were less frequently prescribed P2Y12 inhibitors (89% versus 86%, P<0.001) less likely to undergo invasive angiography (67% versus 41%, P<0.001) or percutaneous coronary intervention (41% versus 25%, P<0.001), and were less often referred to cardiac rehabilitation (80% versus 66%, P<0.001). Following non-ST-segment-elevation myocardial infarction, patients with CKD had higher risk of 30-day (adjusted hazard ratio [HR], 1.24 [95% CI, 1.20-1.29], 1-year 1.47 [95% CI, 1.44-1.51]) and 5-year mortality 1.55 (95% CI, 1.53-1.58) than patients without CKD (all P<0.001). Risk of mortality over the entire study period was highest in CKD Stage 5 (HR, 2.98 [95% CI, 2.87-3.10]), even after excluding mortality ≤30 days (HR, 3.03 [95% CI, 2.90-3.17]) (P<0.001). There was no significant difference in proportion of deaths attributable to cardiovascular disease at 30 days (CKD; 76% versus no CKD; 76%), or 1 -year (CKD; 62% versus no CKD; 62%). CONCLUSIONS: Patients with CKD were significantly less likely to receive invasive investigation or undergo percutaneous coronary intervention and had significantly higher risk of short- and longer-term mortality. Risk of mortality increased with reducing CKD stage. Cardiovascular disease was the main cause of mortality in patients with CKD, but at comparable rates to the general population with non-ST-segment-elevation myocardial infarction.


Subject(s)
Non-ST Elevated Myocardial Infarction , Registries , Renal Insufficiency, Chronic , Humans , Renal Insufficiency, Chronic/mortality , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/therapy , Renal Insufficiency, Chronic/complications , Male , Female , Aged , Middle Aged , Non-ST Elevated Myocardial Infarction/mortality , Non-ST Elevated Myocardial Infarction/therapy , Non-ST Elevated Myocardial Infarction/diagnosis , United Kingdom/epidemiology , Time Factors , Percutaneous Coronary Intervention/statistics & numerical data , Percutaneous Coronary Intervention/mortality , Follow-Up Studies , Risk Factors , Aged, 80 and over , Risk Assessment , Outcome and Process Assessment, Health Care
12.
Sci Rep ; 14(1): 19282, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164403

ABSTRACT

QSPR mathematically links physicochemical properties with the structure of a molecule. The physicochemical properties of chemical molecules can be predicted using topological indices. It is an effective method for eliminating costly and time-consuming laboratory tests. We established a QSPR between mev-degree and mve-degree-based indices and the physical properties of benzenoid hydrocarbons. To compute these indices, we designed a program using Maple software and the correlation between indices and physical properties was developed using the SPSS software. Our study reveals that the mve-degree-based sum-connectivity ( χ mve ) and atom bond connectivity ( A B C mve ) index, mev-degree-based Randic ( R mev ) and Zagreb ( M mev ) index are the three most significant parameters and have good prediction ability for the physicochemical properties. We examined that R mev predicts the molar refractivity and boiling point, χ mve predicts the LogP and enthalpy, A B C mve predicts the molecular weight, M mev predicts the Gibb's energy, Pie-electron energy and Henry's law. Moreover, we computed the indices for the linear [n]-phenylen.

13.
Toxics ; 12(8)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39195637

ABSTRACT

Soil pollution with cadmium (Cd) poses serious health and environmental consequences. The study investigated the incubation of several soil samples and conducted quantitative soil characterization to assess the influence of biochar (BC) on Cd adsorption. The aim was to develop predictive models for Cd concentrations using statistical and modeling approaches dependent on soil characteristics. The potential risk linked to the transformation and immobilization of Cd adsorption by BC in the soil could be conservatively assessed by pH, clay, cation exchange capacity, organic carbon, and electrical conductivity. In this study, Long Short-Term Memory (LSTM), Bidirectional Gated Recurrent Unit (BiGRU), and 5-layer CNN Convolutional Neural Networks (CNNs) were applied for risk assessments to establish a framework for evaluating Cd risk in BC amended soils to predict Cd transformation. In the case of control soils (CK), the BiGRU model showed commendable performance, with an R2 value of 0.85, indicating an approximate 85.37% variance in the actual Cd. The LSTM model, which incorporates sequence data, produced less accurate results (R2=0.84), while the 5-layer CNN model had an R2 value of 0.91, indicating that the CNN model could account for over 91% of the variation in actual Cd levels. In the case of BC-applied soils, the BiGRU model demonstrated a strong correlation between predicted and actual values with R2 (0.93), indicating that the model explained 93.21% of the variance in Cd concentrations. Similarly, the LSTM model showed a notable increase in performance with BC-treated soil data. The R2 value for this model stands at a robust R2 (0.94), reflecting its enhanced ability to predict Cd levels with BC incorporation. Outperforming both recurrent models, the 5-layer CNN model attained the highest precision with an R2 value of 0.95, suggesting that 95.58% of the variance in the actual Cd data can be explained by the CNN model's predictions in BC-amended soils. Consequently, this study suggests developing ecological soil remediation strategies that can effectively manage heavy metal pollution in soils for environmental sustainability.

14.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-39155798

ABSTRACT

Betaine supplementation in dairy cattle has gained attention due to its potential benefits to production and health as a methyl donor, which can play a crucial role in the metabolism of dairy cows. The objective of the current meta-analysis was to quantify the effects of betaine supplementation on milk production, composition, ß-hydroxybutyric acid (BHBA), and non-esterified fatty acids (NEFA). A systematic literature search was carried out, all relevant studies were retrieved, and the meta-analysis was carried out. The mean difference (MD) for dry matter intake (DMI) using the random-effects model was 0.499 kg/d (P < 0.0001). The subgroup analysis indicated that supplementing betaine in heat-stressed cows increased DMI by 0.584 kg/d (P < 0.001), while in cows not exposed to heat stress, DMI was increased by 0.381 kg/d (P = 0.007). The energy-corrected milk (ECM) increased by 1.36 kg/d (P < 0.0001). The milk fat yield was significantly increased in betaine-supplemented cows (MD = 0.040 kg/d, 95% CI = 0.015 to 0.065). The milk protein yield (kg/d) (MD = 0.014, P = 0.138) was increased (MD = 0.035, P = 0.0005) by betaine supplementation. The lactose yield (kg/d) was also significantly higher (MD = 0.055, P = 0.020) in betaine-supplemented cows. The standardized mean difference (SMD) for NEFA (SMD = - 0.447, 95% CI = - 1.029 to 0.135, P = 0.114) and BHBA (SMD = - 0.130, 95% CI = - 0.491 to 0.234). In conclusion, the findings from this meta-analysis suggest that betaine supplementation positively influences DMI, ECM, milk fat yield, milk lactose yield, and milk protein yield. Subgroup analysis further indicated that the positive effects on DMI are greater in heat-stressed cows compared to those not exposed to heat stress. The analysis did not find significant effects on the levels of NEFA or BHBA, suggesting that betaine supplementation may not directly influence these metabolic parameters.


The aim of this meta-analysis was to examine the effects of dietary betaine supplementation on dairy cows' dry matter intake, milk production, milk composition, non-esterified fatty acids, and ß-hydroxybutyric acid. The results indicated that the supplementation of betaine increased dry matter intake (+0.584 kg/d/cow), energy-corrected milk (+1.36 kg/d), milk fat yield (+ 0.040 kg/d), milk protein yield (+ 0.014 kg/d), and lactose yield (+ 0.055 kg/d). ß-Hydroxybutyric acid and plasma non-esterified fatty acids were not influenced by betaine supplementation in dairy cattle.


Subject(s)
3-Hydroxybutyric Acid , Betaine , Dietary Supplements , Fatty Acids, Nonesterified , Milk , Animals , Cattle/physiology , Milk/chemistry , Betaine/pharmacology , Betaine/administration & dosage , Fatty Acids, Nonesterified/blood , Dietary Supplements/analysis , Female , 3-Hydroxybutyric Acid/blood , 3-Hydroxybutyric Acid/pharmacology , Diet/veterinary , Lactation/drug effects , Animal Feed/analysis
15.
PeerJ ; 12: e17721, 2024.
Article in English | MEDLINE | ID: mdl-39040935

ABSTRACT

A large body of research establishes the efficacy of musical intervention in many aspects of physical, cognitive, communication, social, and emotional rehabilitation. However, the underlying neural mechanisms for musical therapy remain elusive. This study aimed to investigate the potential neural correlates of musical therapy, focusing on the changes in the topology of emotion brain network. To this end, a Bayesian statistical approach and a cross-over experimental design were employed together with two resting-state magnetoencephalography (MEG) as controls. MEG recordings of 30 healthy subjects were acquired while listening to five auditory stimuli in random order. Two resting-state MEG recordings of each subject were obtained, one prior to the first stimulus (pre) and one after the final stimulus (post). Time series at the level of brain regions were estimated using depth-weighted minimum norm estimation (wMNE) source reconstruction method and the functional connectivity between these regions were computed. The resultant connectivity matrices were used to derive two topological network measures: transitivity and global efficiency which are important in gauging the functional segregation and integration of brain network respectively. The differences in these measures between pre- and post-stimuli resting MEG were set as the equivalence regions. We found that the network measures under all auditory stimuli were equivalent to the resting state network measures in all frequency bands, indicating that the topology of the functional brain network associated with emotional regulation in healthy subjects remains unchanged following these auditory stimuli. This suggests that changes in the emotion network topology may not be the underlying neural mechanism of musical therapy. Nonetheless, further studies are required to explore the neural mechanisms of musical interventions especially in the populations with neuropsychiatric disorders.


Subject(s)
Acoustic Stimulation , Auditory Perception , Bayes Theorem , Brain , Emotions , Healthy Volunteers , Magnetoencephalography , Humans , Magnetoencephalography/methods , Male , Female , Adult , Emotions/physiology , Acoustic Stimulation/methods , Brain/physiology , Auditory Perception/physiology , Nerve Net/physiology , Young Adult , Music Therapy/methods , Cross-Over Studies , Brain Mapping/methods
16.
Genes (Basel) ; 15(7)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39062623

ABSTRACT

Deafness in vertebrates is associated with variants of hundreds of genes. Yet, many mutant genes causing rare forms of deafness remain to be discovered. A consanguineous Pakistani family segregating nonsyndromic deafness in two sibships were studied using microarrays and exome sequencing. A 1.2 Mb locus (DFNB128) on chromosome 5q11.2 encompassing six genes was identified. In one of the two sibships of this family, a novel homozygous recessive variant NM_005921.2:c.4460G>A p.(Arg1487His) in the kinase domain of MAP3K1 co-segregated with nonsyndromic deafness. There are two previously reported Map3k1-kinase-deficient mouse models that are associated with recessively inherited syndromic deafness. MAP3K1 phosphorylates serine and threonine and functions in a signaling pathway where pathogenic variants of HGF, MET, and GAB1 were previously reported to be associated with human deafness DFNB39, DFNB97, and DFNB26, respectively. Our single-cell transcriptome data of mouse cochlea mRNA show expression of Map3k1 and its signaling partners in several inner ear cell types suggesting a requirement of wild-type MAP3K1 for normal hearing. In contrast to dominant variants of MAP3K1 associated with Disorders of Sex Development 46,XY sex-reversal, our computational modeling of the recessive substitution p.(Arg1487His) predicts a subtle structural alteration in MAP3K1, consistent with the limited phenotype of nonsyndromic deafness.


Subject(s)
Deafness , Genes, Recessive , MAP Kinase Kinase Kinase 1 , Pedigree , Animals , Mice , Humans , Female , Male , Deafness/genetics , MAP Kinase Kinase Kinase 1/genetics , MAP Kinase Kinase Kinase 1/metabolism , Disease Models, Animal , Hearing Loss/genetics , Exome Sequencing , Consanguinity
17.
Int J Occup Saf Ergon ; 30(3): 882-895, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38946205

ABSTRACT

Various toxic and flammable gases exist in the fertilizer industry whose release quantification is very important regarding emergency preparedness, planning and response, and well-being of the community. ALOHA threat zones and threat at a point coupled with MARPLOT are evaluated for ammonia, methane, carbon dioxide and hydrogen release, and outdoor and indoor concentrations of these gases in nearby residences and highways calculated. These footprints are calculated using ALOHA which requires inputs such as site data, site location, building type, gas name, atmospheric inputs, release source information and dispersion model to display the threat zone, which can then be shown on MARPLOT. Potential impact of these releases on the community is mitigated through releasing equipment isolations, water sprays for dilutions, dilutions through steam or air and emergency sirens for information. This article covers hazards in the fertilizer industry, and provides general guidelines for operational staff of any industry to mitigate hazards.


Subject(s)
Fertilizers , Humans , Risk Management/methods , Ammonia/analysis , Methane/analysis , Carbon Dioxide/analysis , Hydrogen , Environmental Monitoring/methods , Occupational Exposure/prevention & control
18.
J Environ Manage ; 366: 121713, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38986368

ABSTRACT

Spirulina platensis contains abundant nitrogen-containing organics, which might react with derivatives of cellulose/lignin during hydrothermal carbonization (HTC), probably affecting yield, property of hydrochar, and pore development in activation of hydrochar. This was investigated herein by conducting co-HTC of spirulina platensis with cellulose, lignin, and sawdust at 260 °C and subsequent activation of the resulting hydrochars with K2C2O4 at 800 °C. The results showed that cross-condensation of spirulina platensis-derived proteins with cellulose/lignin-derived ketones and phenolics did take place in the co-HTC, forming more π-conjugated heavier organics, retaining more nitrogen species in hydrochar, reducing yields of hydrochar, making the hydrochar more aromatic and increasing the thermal stability and resistivity towards activation. This enhanced the yield of activated carbon (AC) by 7 %-20 % and significantly increased specific surface area of the AC from activation of hydrochar of spirulina platensis + lignin to 2074.5 m2/g (859.3 m2/g from spirulina platensis only and 1170.1 m2/g from lignin only). Furthermore, more mesopores from activation of hydrochar of spirulina platensis + cellulose (47 %) and more micropores from activation of hydrochar of spirulina + sawdust (93 %) was generated. The AC from spirulina platensis + lignin with the developed pore structures generated sufficient sites for adsorption of tetracycline from aqueous phase and minimized steric hindrance for mass transfer with the abundant mesopores (43 %).


Subject(s)
Cellulose , Charcoal , Lignin , Spirulina , Spirulina/chemistry , Lignin/chemistry , Cellulose/chemistry , Charcoal/chemistry , Populus/chemistry , Carbon/chemistry
19.
Chemosphere ; 362: 142770, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38969230

ABSTRACT

The impact of functionality of biochar on pressing environmental issue of cadmium (Cd) and lead (Pb) co-contamination in simultaneous soil and water systems has not sufficiently reported. This study investigated the impact of Fe- and Mg-functionalized wheat straw biochar (Fe-WSBC and Mg-WSBC) on Cd and Pb adsorption/immobilization through batch sorption and column leaching trials. Importantly, Fe-WSBC was more effective in adsorbing Cd and Pb (82.84 and 111.24 mg g-1), regeneration ability (removal efficiency 94.32 and 92.365), and competitive ability under competing cations (83.15 and 84.36%) compared to other materials (WSBC and Mg-WSBC). The practical feasibility of Fe-WSBC for spiked river water verified the 92.57% removal of Cd and 85.73% for Pb in 50 mg L-1 and 100 mg L-1 contamination, respectively. Besides, the leaching of Cd and Pb with Fe-WSBC under flow-through conditions was lowered to (0.326 and 17.62 mg L-1), respectively as compared to control (CK) (0.836 and 40.40 mg L-1). In short, this study presents the applicable approach for simultaneous remediation of contaminated water and soil matrices, offering insights into environmentally friendly green remediation strategies for heavy metals co-contaminated matrices.


Subject(s)
Cadmium , Charcoal , Environmental Restoration and Remediation , Lead , Soil Pollutants , Soil , Triticum , Water Pollutants, Chemical , Charcoal/chemistry , Cadmium/chemistry , Triticum/chemistry , Lead/chemistry , Soil Pollutants/chemistry , Soil Pollutants/analysis , Adsorption , Water Pollutants, Chemical/chemistry , Environmental Restoration and Remediation/methods , Soil/chemistry
20.
Front Chem ; 12: 1402563, 2024.
Article in English | MEDLINE | ID: mdl-38831913

ABSTRACT

A significant amount of energy can be produced using renewable energy sources; however, storing massive amounts of energy poses a substantial obstacle to energy production. Economic crisis has led to rapid developments in electrochemical (EC) energy storage devices (EESDs), especially rechargeable batteries, fuel cells, and supercapacitors (SCs), which are effective for energy storage systems. Researchers have lately suggested that among the various EESDs, the SC is an effective alternate for energy storage due to the presence of the following characteristics: SCs offer high-power density (PD), improvable energy density (ED), fast charging/discharging, and good cyclic stability. This review highlighted and analyzed the concepts of supercapacitors and types of supercapacitors on the basis of electrode materials, highlighted the several feasible synthesis processes for preparation of metal oxide (MO) nanoparticles, and discussed the morphological effects of MOs on the electrochemical performance of the devices. In this review, we primarily focus on pseudo-capacitors for SCs, which mainly contain MOs and their composite materials, and also highlight their future possibilities as a useful application of MO-based materials in supercapacitors. The novelty of MO's electrode materials is primarily due to the presence of synergistic effects in the hybrid materials, rich redox activity, excellent conductivity, and chemical stability, making them excellent for SC applications.

SELECTION OF CITATIONS
SEARCH DETAIL