Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 103(3-1): 032610, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33862750

ABSTRACT

A colloidal particle is often termed "Janus" when some portion of its surface is coated by a second material which has distinct properties from the native particle. The anisotropy of Janus particles enables unique behavior at interfaces. However, rigorous methodologies to predict Janus particle dynamics at interfaces are required to implement these particles in complex fluid applications. Previous work studying Janus particle dynamics does not consider van der Waals interactions and realistic, nonuniform coating morphology. Here we develop semianalytic equations to accurately calculate the potential landscape, including van der Waals interactions, of a Janus particle with nonuniform coating thickness above a solid boundary. The effects of both nonuniform coating thickness and van der Waals interactions significantly influence the potential landscape of the particle, particularly in high ionic strength solutions, where the particle samples positions very close to the solid boundary. The equations developed herein facilitate more simple, accurate, and less computationally expensive characterization of conservative interactions experienced by a confined Janus particle than previous methods.

2.
Langmuir ; 36(43): 13041-13050, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33103438

ABSTRACT

Micrometer scale colloidal particles experiencing ∼kT scale interactions and suspended in a fluid are relevant to a broad spectrum of applications. Often, colloidal particles are anisotropic, either by design or by nature. Yet, there are few techniques by which ∼kT scale interactions of anisotropic particles can be measured. Herein, we present the initial development of scattering morphology resolved total internal reflection microscopy (SMR-TIRM). The hypothesis of this work is that the morphology of light scattered by an anisotropic particle from an evanescent wave is a sensitive function of particle orientation. This hypothesis was tested with experiments and simulations mapping the scattered light from colloidal ellipsoids at systemically varied orientations. Scattering morphologies were first fitted with a two-dimensional (2D) Gaussian surface. The fitted morphology was parameterized by the morphology's orientation angle Mϕ and aspect ratio MAR. Data from both experiments and simulations show Mϕ to be a function of the particle azimuthal angle, while MAR was a sensitive function of the polar angle. This analysis shows that both azimuthal and polar angles of a colloidal ellipsoid could be resolved from scattering morphology as well or better than using bright-field microscopy. The integrated scattering intensity, which will be used for determining the separation distance, was also found to be a sensitive function of particle orientation. A procedure for interpreting these confounding effects was developed that in principle would uniquely determine the separation distance, the azimuthal angle, and the polar angle. Tracking these three quantities is necessary for calculating the potential energy landscape sampled by a colloidal ellipsoid.

3.
Phys Rev E ; 101(4-1): 042606, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32422805

ABSTRACT

The dynamics of anisotropic nano- to micro scale colloidal particles in confined environments, either near neighboring particles or boundaries, is relevant to a wide range of applications. We utilized Brownian dynamics simulations to predict the translational and rotational fluctuations of a Janus sphere with a cap of nonmatching density near a boundary. The presence of the cap significantly impacted the rotational dynamics of the particle as a consequence of gravitational torque at experimentally relevant conditions. Gravitational torque dominated stochastic torque for a particle >1 µm in diameter and with a 20-nm-thick gold cap. Janus particles at these conditions sampled mostly cap-down or "quenched" orientations. Although the results summarized herein showed that particles of smaller diameter (<1 µm) with a thin gold coating (<5 nm) behave similarly to an isotropic particle, small increases in either particle diameter or coating thickness quenched the polar rotation of the particle. Histogram landscapes of the separation distance from the boundary and orientation observations of particles with larger diameters or thicker gold coatings were mostly populated with quenched configurations. Finally, the histogram landscapes were inverted to obtain the potential energy landscapes, providing a road map for experimental data to be interpreted.

4.
ACS Appl Mater Interfaces ; 10(37): 30925-30929, 2018 Sep 19.
Article in English | MEDLINE | ID: mdl-30142982

ABSTRACT

Janus particles have anisotropy in surface chemistry or composition that will effect dynamics and interactions with neighboring surfaces. One specific type of Janus particle is that consisting of a native micrometer-scale particle with a cap of gold, platinum, or another metal deposited with a typical thicknesses of ∼10 nm. A key characteristic of metal-capped Janus particles prepared with glancing angle deposition is the cap thickness. The nominal thickness is usually assumed to be uniform across the cap for modeling or interpretation of data, but the vapor deposition fabrication process likely does not produce such a cap because of the particle's curvature. These nonuniformities in the cap thickness may have a profound impact on Janus particle dynamics at equilibrium and in response to external fields. Herein, we summarize an experimental technique that utilizes focused ion beam slicing, image analysis, and results for the direct and local measure of cap thickness for 5 µm polystyrene spheres with a gold cap of nominal thicknesses of 10 or 20 nm. We found the cap varied in thickness continuously along the perimeter of the particle and also that the deposition rate, varying between 0.5 and 2.0 Å/s, did not significantly alter the way in which the thickness varied. These data support the hypothesis that cap thickness of a Janus sphere will vary across the gold surface contour, while demonstrating a feasible route for direct measurement of Janus particle cap thickness.

5.
J Chem Phys ; 147(22): 224906, 2017 Dec 14.
Article in English | MEDLINE | ID: mdl-29246055

ABSTRACT

This article describes the simulated Brownian motion of a sphere comprising hemispheres of unequal zeta potential (i.e., "Janus" particle) very near a wall. The simulation tool was developed and used to assist in the methodology development for applying Total Internal Reflection Microscopy (TIRM) to anisotropic particles. Simulations of the trajectory of a Janus sphere with cap density matching that of the base particle very near a boundary were used to construct 3D potential energy landscapes that were subsequently used to infer particle and solution properties, as would be done in a TIRM measurement. Results showed that the potential energy landscape of a Janus sphere has a transition region at the location of the boundary between the two Janus halves, which depended on the relative zeta potential magnitude. The potential energy landscape was fit to accurately obtain the zeta potential of each hemisphere, particle size, minimum potential energy position and electrolyte concentration, or Debye length. We also determined the appropriate orientation bin size and regimes over which the potential energy landscape should be fit to obtain system properties. Our simulations showed that an experiment may require more than 106 observations to obtain a suitable potential energy landscape as a consequence of the multivariable nature of observations for an anisotropic particle. These results illustrate important considerations for conducting TIRM for anisotropic particles.

SELECTION OF CITATIONS
SEARCH DETAIL