Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Nat Neurosci ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095587

ABSTRACT

Hypothalamic gonadotropin-releasing hormone (GnRH) neurons regulate fertility and integrate hormonal status with environmental cues to ensure reproductive success. Here we show that GnRH neurons in the olfactory bulb (GnRHOB) of adult mice can mediate social recognition. Specifically, we show that GnRHOB neurons extend neurites into the vomeronasal organ and olfactory epithelium and project to the median eminence. GnRHOB neurons in males express vomeronasal and olfactory receptors, are activated by female odors and mediate gonadotropin release in response to female urine. Male preference for female odors required the presence and activation of GnRHOB neurons, was impaired after genetic inhibition or ablation of these cells and relied on GnRH signaling in the posterodorsal medial amygdala. GnRH receptor expression in amygdala kisspeptin neurons appear to be required for GnRHOB neurons' actions on male mounting behavior. Taken together, these results establish GnRHOB neurons as regulating fertility, sex recognition and mating in male mice.

2.
Nat Commun ; 15(1): 6701, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112471

ABSTRACT

The hypothalamic arcuate nucleus (ARH) contains neurons vital for maintaining energy homeostasis that sense and respond to changes in blood-borne metabolic hormones. Despite its juxtaposition to the median eminence (ME), a circumventricular organ lacking a blood-brain barrier and thus exposed to circulating molecules, only a few ventral ARH neurons perceive these extravasating metabolic signals due to a poorly understood ME/ARH diffusion barrier. Here, we show in male mice that aggrecan, a perineural-net proteoglycan deposited by orexigenic ARH neurons, creates a peculiar ventrodorsal diffusion gradient. Fasting enhances aggrecan deposition more dorsally, reinforcing the diffusion barrier, particularly around neurons adjacent to fenestrated capillary loops that enter the ARH. The disruption of aggrecan deposits results in unregulated diffusion of blood-borne molecules into the ARH and impairs food intake. Our findings reveal the molecular nature and plasticity of the ME/ARH diffusion barrier, and indicate its physiological role in hypothalamic metabolic hormone sensing.


Subject(s)
Aggrecans , Arcuate Nucleus of Hypothalamus , Energy Metabolism , Neurons , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Male , Neurons/metabolism , Aggrecans/metabolism , Mice , Median Eminence/metabolism , Mice, Inbred C57BL , Eating/physiology , Fasting/metabolism , Blood-Brain Barrier/metabolism , Signal Transduction
3.
EBioMedicine ; 90: 104535, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37001236

ABSTRACT

BACKGROUND: Polycystic ovary syndrome (PCOS) is the most common reproductive-endocrine disorder affecting between 5 and 18% of women worldwide. An elevated frequency of pulsatile luteinizing hormone (LH) secretion and higher serum levels of anti-Müllerian hormone (AMH) are frequently observed in women with PCOS. The origin of these abnormalities is, however, not well understood. METHODS: We studied brain structure and function in women with and without PCOS using proton magnetic resonance spectroscopy (MRS) and diffusion tensor imaging combined with fiber tractography. Then, using a mouse model of PCOS, we investigated by electron microscopy whether AMH played a role on the regulation of hypothalamic structural plasticity. FINDINGS: Increased AMH serum levels are associated with increased hypothalamic activity/axonal-glial signalling in PCOS patients. Furthermore, we demonstrate that AMH promotes profound micro-structural changes in the murine hypothalamic median eminence (ME), creating a permissive environment for GnRH secretion. These include the retraction of the processes of specialized AMH-sensitive ependymo-glial cells called tanycytes, allowing more GnRH neuron terminals to approach ME blood capillaries both during the run-up to ovulation and in a mouse model of PCOS. INTERPRETATION: We uncovered a central function for AMH in the regulation of fertility by remodeling GnRH terminals and their tanycytic sheaths, and provided insights into the pivotal role of the brain in the establishment and maintenance of neuroendocrine dysfunction in PCOS. FUNDING: INSERM (U1172), European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement n° 725149), CHU de Lille, France (Bonus H).


Subject(s)
Polycystic Ovary Syndrome , Humans , Animals , Mice , Female , Luteinizing Hormone , Anti-Mullerian Hormone , Diffusion Tensor Imaging , Gonadotropin-Releasing Hormone , Neuroglia/pathology
4.
Sci Transl Med ; 14(665): eabh2369, 2022 10 05.
Article in English | MEDLINE | ID: mdl-36197968

ABSTRACT

The nitric oxide (NO) signaling pathway in hypothalamic neurons plays a key role in the regulation of the secretion of gonadotropin-releasing hormone (GnRH), which is crucial for reproduction. We hypothesized that a disruption of neuronal NO synthase (NOS1) activity underlies some forms of hypogonadotropic hypogonadism. Whole-exome sequencing was performed on a cohort of 341 probands with congenital hypogonadotropic hypogonadism to identify ultrarare variants in NOS1. The activity of the identified NOS1 mutant proteins was assessed by their ability to promote nitrite and cGMP production in vitro. In addition, physiological and pharmacological characterization was carried out in a Nos1-deficient mouse model. We identified five heterozygous NOS1 loss-of-function mutations in six probands with congenital hypogonadotropic hypogonadism (2%), who displayed additional phenotypes including anosmia, hearing loss, and intellectual disability. NOS1 was found to be transiently expressed by GnRH neurons in the nose of both humans and mice, and Nos1 deficiency in mice resulted in dose-dependent defects in sexual maturation as well as in olfaction, hearing, and cognition. The pharmacological inhibition of NO production in postnatal mice revealed a critical time window during which Nos1 activity shaped minipuberty and sexual maturation. Inhaled NO treatment at minipuberty rescued both reproductive and behavioral phenotypes in Nos1-deficient mice. In summary, lack of NOS1 activity led to GnRH deficiency associated with sensory and intellectual comorbidities in humans and mice. NO treatment during minipuberty reversed deficits in sexual maturation, olfaction, and cognition in Nos1 mutant mice, suggesting a potential therapy for humans with NO deficiency.


Subject(s)
Hypogonadism , Nitric Oxide , Animals , Cognition , Gonadotropin-Releasing Hormone/genetics , Gonadotropin-Releasing Hormone/metabolism , Humans , Hypogonadism/complications , Hypogonadism/congenital , Hypogonadism/genetics , Mice , Mutant Proteins , Mutation/genetics , Nitric Oxide Synthase Type I/genetics , Nitrites
5.
Cell Metab ; 34(7): 1054-1063.e7, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35716660

ABSTRACT

Liraglutide, an anti-diabetic drug and agonist of the glucagon-like peptide one receptor (GLP1R), has recently been approved to treat obesity in individuals with or without type 2 diabetes. Despite its extensive metabolic benefits, the mechanism and site of action of liraglutide remain unclear. Here, we demonstrate that liraglutide is shuttled to target cells in the mouse hypothalamus by specialized ependymoglial cells called tanycytes, bypassing the blood-brain barrier. Selectively silencing GLP1R in tanycytes or inhibiting tanycytic transcytosis by botulinum neurotoxin expression not only hampers liraglutide transport into the brain and its activation of target hypothalamic neurons, but also blocks its anti-obesity effects on food intake, body weight and fat mass, and fatty acid oxidation. Collectively, these striking data indicate that the liraglutide-induced activation of hypothalamic neurons and its downstream metabolic effects are mediated by its tanycytic transport into the mediobasal hypothalamus, strengthening the notion of tanycytes as key regulators of metabolic homeostasis.


Subject(s)
Diabetes Mellitus, Type 2 , Liraglutide , Animals , Blood-Brain Barrier , Diabetes Mellitus, Type 2/metabolism , Ependymoglial Cells , Hypothalamus/metabolism , Liraglutide/pharmacology , Mice , Obesity/drug therapy , Obesity/metabolism
6.
J Clin Invest ; 131(18)2021 09 15.
Article in English | MEDLINE | ID: mdl-34324439

ABSTRACT

Hypothalamic glucose sensing enables an organism to match energy expenditure and food intake to circulating levels of glucose, the main energy source of the brain. Here, we established that tanycytes of the arcuate nucleus of the hypothalamus, specialized glia that line the wall of the third ventricle, convert brain glucose supplies into lactate that they transmit through monocarboxylate transporters to arcuate proopiomelanocortin neurons, which integrate this signal to drive their activity and to adapt the metabolic response to meet physiological demands. Furthermore, this transmission required the formation of extensive connexin-43 gap junction-mediated metabolic networks by arcuate tanycytes. Selective suppression of either tanycytic monocarboxylate transporters or gap junctions resulted in altered feeding behavior and energy metabolism. Tanycytic intercellular communication and lactate production are thus integral to the mechanism by which hypothalamic neurons that regulate energy and glucose homeostasis efficiently perceive alterations in systemic glucose levels as a function of the physiological state of the organism.


Subject(s)
Arcuate Nucleus of Hypothalamus/metabolism , Ependymoglial Cells/metabolism , Glucose/metabolism , Lactic Acid/metabolism , Pro-Opiomelanocortin/metabolism , Animals , Energy Metabolism , Feeding Behavior/physiology , Gap Junctions/metabolism , Gene Knockdown Techniques , Homeostasis , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Models, Neurological , Monocarboxylic Acid Transporters/antagonists & inhibitors , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/metabolism , Muscle Proteins/antagonists & inhibitors , Muscle Proteins/genetics , Muscle Proteins/metabolism , Neurons/metabolism , Signal Transduction , Symporters/antagonists & inhibitors , Symporters/genetics , Symporters/metabolism
7.
Neuroendocrinology ; 110(6): 552-562, 2020.
Article in English | MEDLINE | ID: mdl-31484186

ABSTRACT

The hypothalamus contains integrative systems that support life, including physiological processes such as food intake, energy expenditure, and reproduction. Here, we show that anorexia nervosa (AN) patients, contrary to normal weight and constitutionally lean individuals, respond with a paradoxical reduction in hypothalamic levels of glutamate/glutamine (Glx) upon feeding. This reversal of the Glx response is associated with decreased wiring in the arcuate nucleus and increased connectivity in the lateral hypothalamic area, which are involved in the regulation on a variety of physiological and behavioral functions including the control of food intake and energy balance. The identification of distinct hypothalamic neurochemical dysfunctions and associated structural variations in AN paves the way for the development of new diagnostic and treatment strategies in conditions associated with abnormal body mass index and a maladaptive response to negative energy balance.


Subject(s)
Anorexia Nervosa , Arcuate Nucleus of Hypothalamus , Glutamic Acid/metabolism , Glutamine/metabolism , Hypothalamic Area, Lateral , Adult , Anorexia Nervosa/diagnostic imaging , Anorexia Nervosa/metabolism , Anorexia Nervosa/pathology , Anorexia Nervosa/physiopathology , Arcuate Nucleus of Hypothalamus/diagnostic imaging , Arcuate Nucleus of Hypothalamus/metabolism , Arcuate Nucleus of Hypothalamus/pathology , Arcuate Nucleus of Hypothalamus/physiopathology , Female , Humans , Hypothalamic Area, Lateral/diagnostic imaging , Hypothalamic Area, Lateral/metabolism , Hypothalamic Area, Lateral/pathology , Hypothalamic Area, Lateral/physiopathology , Magnetic Resonance Imaging , Male , Proton Magnetic Resonance Spectroscopy , Young Adult
8.
Cereb Cortex ; 28(7): 2458-2478, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29722804

ABSTRACT

Neuropathological conditions might affect adult granulogenesis in the adult human dentate gyrus. However, radial glial cells (RGCs) have not been well characterized during human development and aging. We have previously described progenitor and neuronal layer establishment in the hippocampal pyramidal layer and dentate gyrus from embryonic life until mid-gestation. Here, we describe RGC subtypes in the hippocampus from 13 gestational weeks (GW) to mid-gestation and characterize their evolution and the dynamics of neurogenesis from mid-gestation to adulthood in normal and Alzheimer's disease (AD) subjects. In the pyramidal ventricular zone (VZ), RGC density declined with neurogenesis from mid-gestation until the perinatal period. In the dentate area, morphologic and antigenic differences among RGCs were observed from early ages of development to adulthood. Density and proliferative capacity of dentate RGCs as well as neurogenesis were strongly reduced during childhood until 5 years, few DCX+ cells are seen in adults. The dentate gyrus of both control and AD individuals showed Nestin+ and/or GFAPδ+ cells displaying different morphologies. In conclusion, pools of morphologically, antigenically, and topographically diverse neural progenitor cells are present in the human hippocampus from early developmental stages until adulthood, including in AD patients, while their neurogenic potential seems negligible in the adult.


Subject(s)
Fetus/cytology , Hippocampus , Neural Stem Cells/pathology , Neurogenesis/physiology , Neurons/pathology , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Alzheimer Disease , Child , Child, Preschool , Female , Gestational Age , Hippocampus/embryology , Hippocampus/growth & development , Hippocampus/pathology , Humans , Infant , Infant, Newborn , Ki-67 Antigen/metabolism , Male , Middle Aged , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Young Adult
9.
Dev Neurosci ; 40(5-6): 396-416, 2018.
Article in English | MEDLINE | ID: mdl-30878996

ABSTRACT

The Golgi apparatus (GA) is involved in a whole spectrum of activities, from lipid biosynthesis and membrane secretion to the posttranslational processing and trafficking of most proteins, the control of mitosis, cell polarity, migration and morphogenesis, and diverse processes such as apoptosis, autophagy, and the stress response. In keeping with its versatility, mutations in GA proteins lead to a number of different disorders, including syndromes with multisystem involvement. Intriguingly, however, > 40% of the GA-related genes known to be associated with disease affect the central or peripheral nervous system, highlighting the critical importance of the GA for neural function. We have previously proposed the term "Golgipathies" in relation to a group of disorders in which mutations in GA proteins or their molecular partners lead to consequences for brain development, in particular postnatal-onset microcephaly (POM), white-matter defects, and intellectual disability (ID). Here, taking into account the broader role of the GA in the nervous system, we refine and enlarge this emerging concept to include other disorders whose symptoms may be indicative of altered neurodevelopmental processes, from neurogenesis to neuronal migration and the secretory function critical for the maturation of postmitotic neurons and myelination.

10.
Prog Neurobiol ; 153: 46-63, 2017 06.
Article in English | MEDLINE | ID: mdl-28377289

ABSTRACT

The Golgi apparatus plays a central role in cell homeostasis, not only in processing and maturing newly synthesized proteins and lipids but also in orchestrating their sorting, packing, routing and recycling on the way to their final destination. These multiple secretory pathways require a complex ballet of vesicular and tubular carriers that continuously bud off from donor membranes and fuse to acceptor membranes. Membrane trafficking is particularly prominent in axons, where cargo molecules have a long way to travel before they reach the synapse, and in oligodendrocytes, which require an immense increase in membrane surface in order to sheathe axons in myelin. Interestingly, in recent years, genes encoding Golgi-associated proteins with a role in membrane trafficking have been found to be defective in an increasing number of inherited disorders whose clinical manifestations include postnatal-onset microcephaly (POM), white matter defects and intellectual disability. Several of these genes encode RAB GTPases, RAB-effectors or RAB-regulating proteins, linking POM and intellectual disability to RAB-dependent Golgi trafficking pathways and suggesting that their regulation is critical to postnatal brain maturation and function. Here, we review the key roles of the Golgi apparatus in post-mitotic neurons and the oligodendrocytes that myelinate them, and provide an overview of these Golgi-associated POM-causing genes, their function in Golgi organization and trafficking and the likely mechanisms that may link dysfunctions in RAB-dependent regulatory pathways with POM.


Subject(s)
Brain/physiopathology , Golgi Apparatus/metabolism , Golgi Apparatus/pathology , Microcephaly/pathology , Microcephaly/physiopathology , Protein Transport , rab GTP-Binding Proteins/metabolism , Animals , Brain/pathology , Cell Membrane/metabolism , Evidence-Based Medicine , Humans , Models, Neurological
11.
Development ; 143(21): 3969-3981, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27803058

ABSTRACT

Fertility in mammals is controlled by hypothalamic neurons that secrete gonadotropin-releasing hormone (GnRH). These neurons differentiate in the olfactory placodes during embryogenesis and migrate from the nose to the hypothalamus before birth. Information regarding this process in humans is sparse. Here, we adapted new tissue-clearing and whole-mount immunohistochemical techniques to entire human embryos/fetuses to meticulously study this system during the first trimester of gestation in the largest series of human fetuses examined to date. Combining these cutting-edge techniques with conventional immunohistochemistry, we provide the first chronological and quantitative analysis of GnRH neuron origins, differentiation and migration, as well as a 3D atlas of their distribution in the fetal brain. We reveal not only that the number of GnRH-immunoreactive neurons in humans is significantly higher than previously thought, but that GnRH cells migrate into several extrahypothalamic brain regions in addition to the hypothalamus. Their presence in these areas raises the possibility that GnRH has non-reproductive roles, creating new avenues for research on GnRH functions in cognitive, behavioral and physiological processes.


Subject(s)
Brain/embryology , Cell Differentiation , Cell Movement , Fertility/physiology , Fetus/cytology , Gonadotropin-Releasing Hormone/metabolism , Neurons/physiology , Anatomy, Artistic , Atlases as Topic , Brain/cytology , Brain/metabolism , Brain Mapping/methods , Embryo, Mammalian , Embryonic Development/physiology , Female , Fetus/embryology , Fetus/metabolism , Humans , Imaging, Three-Dimensional , Immunohistochemistry , Male , Neurons/metabolism
12.
J Neurosci Res ; 94(12): 1546-1560, 2016 12.
Article in English | MEDLINE | ID: mdl-27614029

ABSTRACT

The cognitive and behavioral deficits caused by traumatic brain injury (TBI) to the immature brain are more severe and persistent than injuries to the adult brain. Understanding this developmental sensitivity is critical because children under 4 years of age of sustain TBI more frequently than any other age group. One of the first events after TBI is the infiltration and degranulation of mast cells (MCs) in the brain, releasing a range of immunomodulatory substances; inhibition of these cells is neuroprotective in other types of neonatal brain injury. This study investigates for the first time the role of MCs in mediating injury in a P7 mouse model of pediatric contusion-induced TBI. We show that various neural cell types express histamine receptors and that histamine exacerbates excitotoxic cell death in primary cultured neurons. Cromoglycate, an inhibitor of MC degranulation, altered the inflammatory phenotype of microglia activated by TBI, reversing several changes but accentuating others, when administered before TBI. However, without regard to the time of cromoglycate administration, inhibiting MC degranulation did not affect cell loss, as evaluated by ventricular dilatation or cleaved caspase-3 labeling, or the density of activated microglia, neurons, or myelin. In double-heterozygous cKit mutant mice lacking MCs, this overall lack of effect was confirmed. These results suggest that the role of MCs in this model of pediatric TBI is restricted to subtle effects and that they are unlikely to be viable neurotherapeutic targets. © 2016 Wiley Periodicals, Inc.


Subject(s)
Brain Injuries, Traumatic/pathology , Mast Cells/pathology , Animals , Brain Contusion/pathology , Caspase 3/biosynthesis , Caspase 3/genetics , Cell Death/drug effects , Cells, Cultured , Child, Preschool , Cromolyn Sodium/pharmacology , Disease Models, Animal , Histamine/pharmacology , Humans , Infant , Mice , Mice, Inbred C57BL , Microglia/drug effects , Microglia/metabolism , Neural Stem Cells , Neurons/drug effects , Neurons/metabolism , Proto-Oncogene Proteins c-kit/genetics , Receptors, Histamine/metabolism
14.
Nat Neurosci ; 19(6): 835-44, 2016 06.
Article in English | MEDLINE | ID: mdl-27135215

ABSTRACT

A sparse population of a few hundred primarily hypothalamic neurons forms the hub of a complex neuroglial network that controls reproduction in mammals by secreting the 'master molecule' gonadotropin-releasing hormone (GnRH). Timely postnatal changes in GnRH expression are essential for puberty and adult fertility. Here we report that a multilayered microRNA-operated switch with built-in feedback governs increased GnRH expression during the infantile-to-juvenile transition and that impairing microRNA synthesis in GnRH neurons leads to hypogonadotropic hypogonadism and infertility in mice. Two essential components of this switch, miR-200 and miR-155, respectively regulate Zeb1, a repressor of Gnrh transcriptional activators and Gnrh itself, and Cebpb, a nitric oxide-mediated repressor of Gnrh that acts both directly and through Zeb1, in GnRH neurons. This alteration in the delicate balance between inductive and repressive signals induces the normal GnRH-fuelled run-up to correct puberty initiation, and interfering with this process disrupts the neuroendocrine control of reproduction.


Subject(s)
Gonadotropin-Releasing Hormone/genetics , Gonadotropin-Releasing Hormone/metabolism , MicroRNAs/metabolism , Reproduction/physiology , Sexual Maturation/physiology , Aging , Animals , Fertility/physiology , Hypogonadism/metabolism , Hypothalamus/metabolism , Mice, Inbred C57BL , Mice, Transgenic
15.
Ann Clin Transl Neurol ; 1(10): 739-54, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25493266

ABSTRACT

OBJECTIVES: Excitotoxicity plays a significant role in the pathogenesis of perinatal brain injuries. Among the consequences of excessive activation of the N-methyl-d-aspartate (NMDA)-type glutamate are oxidative stress caused by free radical release from damaged mitochondria, neuronal death and subsequent loss of connectivity. Drugs that could protect nervous tissue and support regeneration are attractive therapeutic options. The hepatocarcinoma intestine pancreas protein/pancreatitis-associated protein I (HIP/PAP) or Reg3α, which is approved for clinical testing for the protection and regeneration of the liver, is upregulated in the central nervous system following injury or disease. Here, we examined the neuroprotective/neuroregenerative potential of HIP/PAP following excitotoxic brain injury. METHODS: We studied the expression of HIP/PAP and two of its putative effectors, cAMP-regulated phosphoprotein 19 (ARPP19) and growth-associated protein 43 (GAP-43), in the neonatal brain, and the protective/regenerative properties of HIP/PAP in three paradigms of perinatal excitotoxicity: intracerebral injection of the NMDA agonist ibotenate in newborn pups, a pediatric model of traumatic brain injury, and cultured primary cortical neurons. RESULTS: HIP/PAP, ARPP19, and GAP-43 were expressed in the neonatal mouse brain. HIP/PAP prevented the formation of cortical and white matter lesions and reduced neuronal death and glial activation following excitotoxic insults in vivo. In vitro, HIP/PAP promoted neuronal survival, preserved neurite complexity and fasciculation, and protected cell contents from reactive oxygen species (ROS)-induced damage. INTERPRETATION: HIP/PAP has strong neuroprotective/neuroregenerative potential following excitotoxic injury to the developing brain, and could represent an interesting therapeutic strategy in perinatal brain injury.

16.
Ann Clin Transl Neurol ; 1(12): 968-81, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25574472

ABSTRACT

OBJECTIVE: Transplanting exogenous neuronal progenitors to replace damaged neurons in the adult brain following injury or neurodegenerative disorders and achieve functional amelioration is a realistic goal. However, studies so far have rarely taken into consideration the preexisting inflammation triggered by the disease process that could hamper the effectiveness of transplanted cells. Here, we examined the fate and long-term consequences of human cerebellar granule neuron precursors (GNP) transplanted into the cerebellum of Harlequin mice, an adult model of progressive cerebellar degeneration with early-onset microgliosis. METHODS: Human embryonic stem cell-derived progenitors expressing Atoh1, a transcription factor key to GNP specification, were generated in vitro and stereotaxically transplanted into the cerebellum of preataxic Harlequin mice. The histological and functional impact of these transplants was followed using immunolabeling and Rotarod analysis. RESULTS: Although transplanted GNPs did not survive beyond a few weeks, they triggered the proliferation of endogenous nestin-positive precursors in the leptomeninges that crossed the molecular layer and differentiated into mature neurons. These phenomena were accompanied by the preservation of the granule and Purkinje cell layers and delayed ataxic changes. In vitro neurosphere generation confirmed the enhanced neurogenic potential of the cerebellar leptomeninges of Harlequin mice transplanted with exogenous GNPs. INTERPRETATION: The cerebellar leptomeninges of adult mice contain an endogenous neurogenic niche that can be stimulated to yield mature neurons from an as-yet unidentified population of progenitors. The transplantation of human GNPs not only stimulates this neurogenesis, but, despite the potentially hostile environment, leads to neuroprotection and functional amelioration.

17.
Pediatr Res ; 59(4 Pt 2): 48R-53R, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16549548

ABSTRACT

The capacity of pluripotent embryonic stem cells (ES cells) to proliferate and differentiate makes them promising tools in the field of cell therapy. In spite of the controversy surrounding the numerous ethical questions raised by this technology, it has been shown to have therapeutic potential for heart, lung, liver, bone and connective tissue regeneration. In addition, a very attractive aspect of this technology is its potential for the treatment of cerebral pathology. A number of studies using ES cell transplants report the differentiation of ES cells in the brain or spinal cord of rodents, and the improvement of locomotor and/or cognitive deficits caused by brain injury. This review offers a synthesis of recent advances in the field of both human and rodent stem cell manipulation to select populations of neurons, astrocytes and oligodendrocytes. In parallel, this review emphasizes the striking similarities that exist between genetically programmed embryonic development of the nervous system and the differentiation of ES cells in vitro.


Subject(s)
Brain/embryology , Embryo, Mammalian/cytology , Embryo, Nonmammalian , Stem Cells/cytology , Animals , Bone Morphogenetic Protein 4 , Bone Morphogenetic Proteins/physiology , Brain/cytology , Cell Differentiation/physiology , In Vitro Techniques
19.
Mol Neurobiol ; 27(1): 33-72, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12668901

ABSTRACT

Stroke is one of the leading causes of death and severe disability in most industrialized countries. Despite the extensive research efforts of both academic and industrial laboratories during the last few decades, no changes have been brought about by the design of neuroprotective therapies. The progressive decrease of stroke-induced death and disability is entirely attributable to improvements in the identification and reduction of risk factors. Over the past few years, experimental research has led to the emergence of a wealth of information regarding the complex and interrelated processes of neuronal degeneration and death triggered by ischemia. This unprecedented insight has led to new theories on the mechanisms of ischemic damage, and has suggested new targets and strategies for therapeutic intervention designed to reduce the clinical consequences of stroke. Among current developments, three strategies seem particularly appealing namely, the limitation of initial or secondary neuronal death by inhibition of apoptotic mechanisms, the enhancement of the endogenous capacity of nervous structures to restore lost function, and the replacement of lost cells by transplantation therapy.


Subject(s)
Apoptosis/physiology , Brain Ischemia/metabolism , Stroke/metabolism , Animals , Apoptosis/drug effects , Brain Ischemia/physiopathology , Brain Ischemia/therapy , Brain Tissue Transplantation , Caspase Inhibitors , Caspases/metabolism , Humans , Necrosis , Nerve Regeneration/drug effects , Nerve Regeneration/physiology , Neuroprotective Agents/therapeutic use , Stroke/physiopathology , Stroke/therapy
SELECTION OF CITATIONS
SEARCH DETAIL