Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 186(22): 4868-4884.e12, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37863056

ABSTRACT

Single-cell analysis in living humans is essential for understanding disease mechanisms, but it is impractical in non-regenerative organs, such as the eye and brain, because tissue biopsies would cause serious damage. We resolve this problem by integrating proteomics of liquid biopsies with single-cell transcriptomics from all known ocular cell types to trace the cellular origin of 5,953 proteins detected in the aqueous humor. We identified hundreds of cell-specific protein markers, including for individual retinal cell types. Surprisingly, our results reveal that retinal degeneration occurs in Parkinson's disease, and the cells driving diabetic retinopathy switch with disease stage. Finally, we developed artificial intelligence (AI) models to assess individual cellular aging and found that many eye diseases not associated with chronological age undergo accelerated molecular aging of disease-specific cell types. Our approach, which can be applied to other organ systems, has the potential to transform molecular diagnostics and prognostics while uncovering new cellular disease and aging mechanisms.


Subject(s)
Aging , Aqueous Humor , Artificial Intelligence , Liquid Biopsy , Proteomics , Humans , Aging/metabolism , Aqueous Humor/chemistry , Biopsy , Parkinson Disease/diagnosis
2.
J Vis Exp ; (199)2023 09 11.
Article in English | MEDLINE | ID: mdl-37747194

ABSTRACT

A critical challenge in translational research is establishing a viable and efficient interface between patient care in the operating room (OR) and the research laboratory. Here, we developed a protocol for acquiring high-quality liquid biopsies for molecular analyses from the aqueous humor and the vitreous from patients undergoing eye surgery. In this workflow, a Mobile Operating Room Lab Interface (MORLI) cart equipped with a computer, a barcode scanner, and lab instruments, including onboard cold storage, is used to obtain and archive human biological samples. A web-based data privacy-compliant database enables annotating each sample over its lifetime, and a cartesian coordinate system allows tracking each barcoded specimen in storage, enabling quick and accurate retrieval of samples for downstream analyses. Molecular characterization of human tissue samples not only serves as a diagnostic tool (e.g., to distinguish between infectious endophthalmitis and other non-infectious intraocular inflammation) but also represents an important component of translational research, allowing the identification of new drug targets, development of new diagnostic tools, and personalized therapeutics.


Subject(s)
Biological Specimen Banks , Endophthalmitis , Humans , Vitreous Body , Aqueous Humor , Liquid Biopsy
SELECTION OF CITATIONS
SEARCH DETAIL
...