Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38464251

ABSTRACT

The androgen receptor (AR) is a ligand-responsive transcription factor that binds at enhancers to drive terminal differentiation of the prostatic luminal epithelia. By contrast, in tumors originating from these cells, AR chromatin occupancy is extensively reprogrammed to drive hyper-proliferative, metastatic, or therapy-resistant phenotypes, the molecular mechanisms of which remain poorly understood. Here, we show that the tumor-specific enhancer circuitry of AR is critically reliant on the activity of Nuclear Receptor Binding SET Domain Protein 2 (NSD2), a histone 3 lysine 36 di-methyltransferase. NSD2 expression is abnormally gained in prostate cancer cells and its functional inhibition impairs AR trans-activation potential through partial off-loading from over 40,000 genomic sites, which is greater than 65% of the AR tumor cistrome. The NSD2-dependent AR sites distinctly harbor a chimeric AR-half motif juxtaposed to a FOXA1 element. Similar chimeric motifs of AR are absent at the NSD2-independent AR enhancers and instead contain the canonical palindromic motifs. Meta-analyses of AR cistromes from patient tumors uncovered chimeric AR motifs to exclusively participate in tumor-specific enhancer circuitries, with a minimal role in the physiological activity of AR. Accordingly, NSD2 inactivation attenuated hallmark cancer phenotypes that were fully reinstated upon exogenous NSD2 re-expression. Inactivation of NSD2 also engendered increased dependency on its paralog NSD1, which independently maintained AR and MYC hyper-transcriptional programs in cancer cells. Concordantly, a dual NSD1/2 PROTAC degrader, called LLC0150, was preferentially cytotoxic in AR-dependent prostate cancer as well as NSD2-altered hematologic malignancies. Altogether, we identify NSD2 as a novel subunit of the AR neo-enhanceosome that wires prostate cancer gene expression programs, positioning NSD1/2 as viable paralog co-targets in advanced prostate cancer.

2.
Nat Commun ; 15(1): 1761, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38409161

ABSTRACT

Tissue damage elicits cell fate switching through a process called metaplasia, but how the starting cell fate is silenced and the new cell fate is activated has not been investigated in animals. In cell culture, pioneer transcription factors mediate "reprogramming" by opening new chromatin sites for expression that can attract transcription factors from the starting cell's enhancers. Here we report that SOX4 is sufficient to initiate hepatobiliary metaplasia in the adult mouse liver, closely mimicking metaplasia initiated by toxic damage to the liver. In lineage-traced cells, we assessed the timing of SOX4-mediated opening of enhancer chromatin versus enhancer decommissioning. Initially, SOX4 directly binds to and closes hepatocyte regulatory sequences via an overlapping motif with HNF4A, a hepatocyte master regulatory transcription factor. Subsequently, SOX4 exerts pioneer factor activity to open biliary regulatory sequences. The results delineate a hierarchy by which gene networks become reprogrammed under physiological conditions, providing deeper insight into the basis for cell fate transitions in animals.


Subject(s)
Cellular Reprogramming , Chromatin , Animals , Mice , Cell Differentiation/genetics , Cellular Reprogramming/genetics , Metaplasia , Transcription Factors/metabolism
3.
Nat Commun ; 14(1): 5253, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37644036

ABSTRACT

Loss of the tumor suppressive activity of the protein phosphatase 2A (PP2A) is associated with cancer, but the underlying molecular mechanisms are unclear. PP2A holoenzyme comprises a heterodimeric core, a scaffolding A subunit and a catalytic C subunit, and one of over 20 distinct substrate-directing regulatory B subunits. Methylation of the C subunit regulates PP2A heterotrimerization, affecting B subunit binding and substrate specificity. Here, we report that the leucine carboxy methyltransferase (LCMT1), which methylates the L309 residue of the C subunit, acts as a suppressor of androgen receptor (AR) addicted prostate cancer (PCa). Decreased methyl-PP2A-C levels in prostate tumors is associated with biochemical recurrence and metastasis. Silencing LCMT1 increases AR activity and promotes castration-resistant prostate cancer growth. LCMT1-dependent methyl-sensitive AB56αCme heterotrimers target AR and its critical coactivator MED1 for dephosphorylation, resulting in the eviction of the AR-MED1 complex from chromatin and loss of target gene expression. Mechanistically, LCMT1 is regulated by S6K1-mediated phosphorylation-induced degradation requiring the ß-TRCP, leading to acquired resistance to anti-androgens. Finally, feedforward stabilization of LCMT1 by small molecule activator of phosphatase (SMAP) results in attenuation of AR-signaling and tumor growth inhibition in anti-androgen refractory PCa. These findings highlight methyl-PP2A-C as a prognostic marker and that the loss of LCMT1 is a major determinant in AR-addicted PCa, suggesting therapeutic potential for AR degraders or PP2A modulators in prostate cancer treatment.


Subject(s)
Prostatic Neoplasms , Protein Phosphatase 2 , Humans , Male , Androgen Antagonists , Leucine , Methyltransferases , Prostate , Prostatic Neoplasms/genetics , Protein Phosphatase 2/genetics
4.
bioRxiv ; 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36824858

ABSTRACT

Tissue damage elicits cell fate switching through a process called metaplasia, but how the starting cell fate is silenced and the new cell fate is activated has not been investigated in animals. In cell culture, pioneer transcription factors mediate "reprogramming" by opening new chromatin sites for expression that can attract transcription factors from the starting cell's enhancers. Here we report that Sox4 is sufficient to initiate hepatobiliary metaplasia in the adult liver. In lineage-traced cells, we assessed the timing of Sox4-mediated opening of enhancer chromatin versus enhancer decommissioning. Initially, Sox4 directly binds to and closes hepatocyte regulatory sequences via a motif it overlaps with Hnf4a, a hepatocyte master regulator. Subsequently, Sox4 exerts pioneer factor activity to open biliary regulatory sequences. The results delineate a hierarchy by which gene networks become reprogrammed under physiological conditions, providing deeper insight into the basis for cell fate transitions in animals.

5.
Cell Rep ; 39(11): 110971, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35705030

ABSTRACT

Ewing sarcoma (EwS) is a highly aggressive tumor of bone and soft tissues that mostly affects children and adolescents. The pathognomonic oncofusion EWSR1::FLI1 transcription factor drives EwS by orchestrating an oncogenic transcription program through de novo enhancers. By integrative analysis of thousands of transcriptomes representing pan-cancer cell lines, primary cancers, metastasis, and normal tissues, we identify a 32-gene signature (ESS32 [Ewing Sarcoma Specific 32]) that stratifies EwS from pan-cancer. Among the ESS32, LOXHD1, encoding a stereociliary protein, is the most highly expressed gene through an alternative transcription start site. Deletion or silencing of EWSR1::FLI1 bound upstream de novo enhancer results in loss of the LOXHD1 short isoform, altering EWSR1::FLI1 and HIF1α pathway genes and resulting in decreased proliferation/invasion of EwS cells. These observations implicate LOXHD1 as a biomarker and a determinant of EwS metastasis and suggest new avenues for developing LOXHD1-targeted drugs or cellular therapies for this deadly disease.


Subject(s)
Carrier Proteins , Enhancer Elements, Genetic , Oncogene Proteins, Fusion , Sarcoma, Ewing , Adolescent , Carrier Proteins/genetics , Cell Line, Tumor , Child , Gene Expression Regulation, Neoplastic , Humans , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Proteins/metabolism , Proto-Oncogene Protein c-fli-1/genetics , Proto-Oncogene Protein c-fli-1/metabolism , RNA-Binding Protein EWS/genetics , RNA-Binding Protein EWS/metabolism , Sarcoma, Ewing/genetics , Sarcoma, Ewing/pathology
6.
Cancer Discov ; 11(5): 1011-1013, 2021 05.
Article in English | MEDLINE | ID: mdl-33947717

ABSTRACT

In this issue of Cancer Discovery, Welti and colleagues demonstrate a positive correlation between the expression of the histone acetyltransferase paralogs CBP and p300 with increased androgen receptor (AR) signaling and androgen deprivation therapy resistance in advanced prostate cancer. CCS1477, a selective inhibitor of p300/CBP bromodomain, disrupts AR- and MYC-regulated gene expression, suppresses tumor growth in vivo in multiple castration-resistant prostate cancer xenograft models, and modulates biomarker expression in early clinical evaluation, providing a novel therapeutic approach for AR-addicted advanced prostate cancer.See related article by Welti et al., p. 1118.


Subject(s)
Androgen Antagonists , Prostatic Neoplasms , Cell Line, Tumor , Genes, myc , Humans , Male , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Receptors, Androgen/genetics
7.
iScience ; 24(3): 102254, 2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33681723

ABSTRACT

Epidemiological data showing increased severity and mortality of COVID-19 in men suggests a potential role for androgen in SARS-CoV-2 infection. Here, we present evidence for the transcriptional regulation of SARS-CoV-2 host cell receptor ACE2 and TMPRSS2 by androgen in mouse and human cells. Additionally, we demonstrate the endogenous interaction between TMPRSS2 and ACE2 in human cells and validate ACE2 as a TMPRSS2 substrate. Furthermore, camostat-a TMPRSS2 inhibitor-blocked the cleavage of pseudotype SARS-CoV-2 surface Spike without disrupting TMPRSS2-ACE2 interaction, thus providing evidence for the first time of a direct role of TMPRSS2 in priming the SARS-CoV-2 Spike, required for viral fusion to the host cell. Importantly, androgen-deprivation, anti-androgens, or camostat attenuated the SARS-CoV-2 S-mediated cellular entry. Together, our data provide a strong rationale for clinical evaluations of TMPRSS2 inhibitors and androgen-deprivation therapy/androgen receptor antagonists alone or in combination with antiviral drugs as early as clinically possible to prevent COVID-19 progression.

8.
Cell Death Discov ; 6: 51, 2020.
Article in English | MEDLINE | ID: mdl-32566256

ABSTRACT

Drug induced resistance is a widespread problem in the clinical management of cancer. Cancer cells, when exposed to cytotoxic drugs, can reprogram their cellular machinery and resist cell death. Evasion of cell death mechanisms, such as apoptosis and necroptosis, are part of a transcriptional reprogramming that cancer cells utilize to mediate cytotoxic threats. An additional strategy adopted by cancer cells to resist cell death is to initiate the epithelial to mesenchymal transition (EMT) program. EMT is a trans-differentiation process which facilitates a motile phenotype in cancer cells which can be induced when cells are challenged by specific classes of cytotoxic drugs. Induction of EMT in malignant cells also results in drug resistance. In this setting, therapy-induced senescence (TIS), an enduring "proliferative arrest", serves as an alternate approach against cancer because cancer cells remain susceptible to induced senescence. The molecular processes of senescence have proved challenging to understand. Senescence has previously been described solely as a tumor-suppressive mechanism; however, recent evidences suggest that senescence-associated secretory phenotype (SASP) can contribute to tumor progression. SASP has also been identified to contribute to EMT induction. Even though the causes of senescence and EMT induction can be wholly different from each other, a functional link between EMT and senescence is still obscure. In this review, we summarize the evidence of potential cross-talk between EMT and senescence while highlighting some of the most commonly identified molecular players. This review will shed light on these two intertwined and highly conserved cellular process, while providing background of the therapeutic implications of these processes.

9.
Eur J Cell Biol ; 99(4): 151076, 2020 May.
Article in English | MEDLINE | ID: mdl-32439219

ABSTRACT

Deregulation of TGF-ß signaling is intricately engrossed in the pathophysiology of pancreatic adenocarcinomas (PDACs). The role of TGF-ß all through pancreatic cancer initiation and progression is multifarious and somewhat paradoxical. TGF-ß plays a tumor suppressive role in early-stage pancreatic cancer by promoting apoptosis and inhibiting epithelial cell cycle progression, but incites tumor promotion in late-stage by modulating genomic instability, neo-angiogenesis, immune evasion, cell motility, and metastasis. Here, we provide evidences that Par-4 acts as one of the vital mediators to regulate TGF-ß/Smad4 pathway, wherein, Par-4 induction/over-expression induced EMT which was later culminated in to apoptosis in presence of TGF-ß via positive regulation of Smad4. Intriguingly, Par-4-/- cells were devoid of significant Smad4 induction compared to Par-4+/+ cells in presence of TGF-ß and ectopic Par-4 steadily augmented Smad4 expression by restoring TGF-ß/Smad4 axis in Panc-1 cells. Further, our FACS and western blotting results unveiled that Par-4 dragged the PDAC cells to G1 arrest in presence of TGF-ß byelevating p21 and p27 levels while attenuating Cyclin E and A levels and augmenting caspase 3 cleavage triggering lethal EMT. Through restoration of Smad4, we further establish that in BxPC3 cell line (Smad4-/-), Smad4 is essential for Par-4 to indulge TGF-ß dependent lethal EMT program. The mechanistic relevance of Par-4 mediated Smad4 activation was additionally validated by co-immunoprecipitation wherein disruption of NM23H1-STRAP interaction by Par-4 rescues TGF-ß/Smad4 pathway in PDAC and mediates the tumor suppressive role of TGF-ß, therefore serving as a vital cog to restore the apoptotic functions of TGF-ß pathway.


Subject(s)
Carcinoma, Pancreatic Ductal/metabolism , Pancreatic Neoplasms/metabolism , Receptors, Thrombin/metabolism , Smad4 Protein/metabolism , Transforming Growth Factor beta/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Epithelial-Mesenchymal Transition , G1 Phase Cell Cycle Checkpoints , Humans , NM23 Nucleoside Diphosphate Kinases/genetics , NM23 Nucleoside Diphosphate Kinases/metabolism , Pancreatic Neoplasms/pathology , Plasmids/genetics , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/genetics , RNA-Binding Proteins/metabolism , Receptors, Thrombin/genetics , Signal Transduction , Smad4 Protein/biosynthesis , Smad4 Protein/genetics , Up-Regulation
10.
Cancer Discov ; 9(11): 1538-1555, 2019 11.
Article in English | MEDLINE | ID: mdl-31466944

ABSTRACT

Metastatic castration-resistant prostate cancer (CRPC) is a fatal disease, primarily resulting from the transcriptional addiction driven by androgen receptor (AR). First-line CRPC treatments typically target AR signaling, but are rapidly bypassed, resulting in only a modest survival benefit with antiandrogens. Therapeutic approaches that more effectively block the AR-transcriptional axis are urgently needed. Here, we investigated the molecular mechanism underlying the association between the transcriptional coactivator MED1 and AR as a vulnerability in AR-driven CRPC. MED1 undergoes CDK7-dependent phosphorylation at T1457 and physically engages AR at superenhancer sites, and is essential for AR-mediated transcription. In addition, a CDK7-specific inhibitor, THZ1, blunts AR-dependent neoplastic growth by blocking AR/MED1 corecruitment genome-wide, as well as reverses the hyperphosphorylated MED1-associated enzalutamide-resistant phenotype. In vivo, THZ1 induces tumor regression of AR-amplified human CRPC in a xenograft mouse model. Together, we demonstrate that CDK7 inhibition selectively targets MED1-mediated, AR-dependent oncogenic transcriptional amplification, thus representing a potential new approach for the treatment of CRPC. SIGNIFICANCE: Potent inhibition of AR signaling is critical to treat CRPC. This study uncovers a driver role for CDK7 in regulating AR-mediated transcription through phosphorylation of MED1, thus revealing a therapeutically targetable potential vulnerability in AR-addicted CRPC.See related commentary by Russo et al., p. 1490.This article is highlighted in the In This Issue feature, p. 1469.


Subject(s)
Mediator Complex Subunit 1/metabolism , Phenylenediamines/administration & dosage , Prostatic Neoplasms, Castration-Resistant/drug therapy , Pyrimidines/administration & dosage , Receptors, Androgen/genetics , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Enhancer Elements, Genetic , Gene Amplification , Gene Expression Regulation, Neoplastic/drug effects , Humans , Male , Mice , PC-3 Cells , Phenylenediamines/pharmacology , Phosphorylation/drug effects , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Pyrimidines/pharmacology , Xenograft Model Antitumor Assays
11.
Cell Death Dis ; 10(6): 467, 2019 06 13.
Article in English | MEDLINE | ID: mdl-31197132

ABSTRACT

Epithelial to mesenchymal transitions (EMT) is a preparatory process for cancer cells to attain motility and further metastasis to distant sites. Majority of DNA damaging drugs have shown to develop EMT as one of the major mechanisms to attain drug resistance. Here we sought to understand the resistance/survival instincts of cancer cells during initial phase of drug treatment. We provide a tangible evidence of stimulation of EMT factors in Apc knockout colorectal carcinoma model. Our results implied that CPT-treated Apc knockout cohorts depicted increased pro-invasive and pro-survival factors (Vimentin/pser38Vimentin & NFκB). Moreover, by cell sorting experiment, we have observed the expression of Vimentin in early apoptotic cells (AnnexinV positive) from 36 to 48 h of CPT treatment. We also observed the expression of chimeric Sec-AnnexinV-mvenus protein in migrated cells on transwell membrane recapitulating signatures of early apoptosis. Notably, induction of Vimentin-mediated signaling (by CPT) delayed apoptosis progression in cells conferring survival responses by modulating the promoter activity of NFκB. Furthermore, our results unveiled a novel link between Vimentin and ATM signaling, orchestrated via binding interaction between Vimentin and ATM kinase. Finally, we observed a significant alteration of crypt-villus morphology upon combination of DIM (EMT inhibitor) with CPT nullified the background EMT signals thus improving the efficacy of the DNA damaging agent. Thus, our findings revealed a resistance strategy of cancer cells within a very initial period of drug treatment by activating EMT program, which hinders the cancer cells to achieve later phases of apoptosis thus increasing the chances of early migration.


Subject(s)
Apoptosis , Colorectal Neoplasms/metabolism , DNA Damage , Epithelial-Mesenchymal Transition , Vimentin/metabolism , Adenomatous Polyposis Coli Protein/genetics , Animals , Apoptosis/drug effects , Apoptosis/genetics , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Camptothecin/administration & dosage , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cell Survival/drug effects , Cell Survival/genetics , Colorectal Neoplasms/enzymology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , Mice , Mice, Knockout , NF-kappa B/metabolism , Signal Transduction/drug effects , Vimentin/genetics
12.
Cell Death Differ ; 24(7): 1275-1287, 2017 07.
Article in English | MEDLINE | ID: mdl-28498365

ABSTRACT

Twist1, a basic helix-loop-helix transcription factor is implicated as a key mediator of epithelial-mesenchymal transition (EMT) and metastatic dissemination in p53-deficient cancer cells. On the other hand, checkpoint kinase 2 (Chk2), a major cell cycle regulatory protein provides a barrier to tumorigenesis due to DNA damage response by preserving genomic stability of the cells. Here we demonstrate that Chk2 induction proficiently abrogates invasion, cell scattering and invadopodia formation ability of p53-mutated invasive cells by suppressing Twist1, indicating Chk2 confers vital role in metastasis prevention. In addition, ectopic Chk2, as well as its (Chk2) induction by natural podophyllotoxin analog, 4'-demethyl-deoxypodophyllotoxin glucoside (4DPG), strongly restrain Twist1 activity along with other mesenchymal markers, for example, ZEB-1, vimentin and Snail1, whereas the epithelial markers such as E-cadherin and TIMP-1 expression augmented robustly. However, downregulation of endogenous Chk2 by siRNA as well as Chk2 selective inhibitor PV1019 implies that 4DPG-mediated inhibition of Twist1 is Chk2-dependent. Further, mechanistic studies unveil that Chk2 negatively regulates Twist1 promoter activity and it (Chk2) interacts steadily with Snail1 protein to curb EMT. Strikingly, Chk2 overexpression triggers premature senescence in these cells with distinctive increase in senescence-associated ß-galactosidase (SA-ß-gal) activity, G2/M cell cycle arrest and induction of senescence-specific marker p21waf1/Cip1. Importantly, stable knockdown of Twist1 by shRNA markedly augments p21 expression, its nuclear accumulation, senescence-associated heterochromatin foci (SAHF) and amplifies the number of SA-ß-gal-positive cells. Moreover, our in vivo studies also validate that 4DPG treatment significantly abrogates tumor growth as well as metastatic lung nodules formation by elevating the level of phospho-Chk2, Chk2 and suppressing Twist1 activity in mouse mammary carcinoma model. In a nutshell, this report conceives a novel strategy of Twist1 suppression through Chk2 induction, which prevents metastatic dissemination and promotes premature senescence in p53-defective invasive cancer cells.


Subject(s)
Cellular Senescence , Checkpoint Kinase 2/metabolism , Nuclear Proteins/metabolism , Tumor Suppressor Protein p53/metabolism , Twist-Related Protein 1/metabolism , Animals , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cellular Senescence/drug effects , Cellular Senescence/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Regulation, Neoplastic/drug effects , Gene Knockdown Techniques , Glucosides/chemistry , Glucosides/pharmacology , Humans , Mice , Models, Biological , Neoplasm Invasiveness , Neoplasm Metastasis , Nuclear Proteins/genetics , Podophyllotoxin/analogs & derivatives , Podophyllotoxin/chemistry , Podophyllotoxin/pharmacology , Promoter Regions, Genetic/genetics , Transcription, Genetic/drug effects , Twist-Related Protein 1/genetics
13.
Eur J Cell Biol ; 96(2): 164-171, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28216015

ABSTRACT

Multiple stresses are prevalent inside the tumor microenvironment rendering tumor growth, neighboring invasion and metastasis of the cancer cells to distant organs. NM23-H1 is the first metastasis suppressor gene identified and known to be implicated as an important regulator of stress-induced metastasis. Herein, we demonstrated that prototypical NM23-H1 expression diminished during hypoxia and serum starvation in Panc-1/MDA-MB-231 cells, but converse invasion patterns were obtained in these two diverse stresses. Supportingly, a compelling discrete difference in mRNA and protein levels of NM23-H1 was achieved in hypoxia as well as serum starvation. Knockdown of NM23-H1 activates EMT whereas the similar effects are subdued in serum starvation where NM23-H1 down-modulation prompted E-cadherin upregulation. Stable NM23-H1 expression augmented E-cadherin levels along with retardation in invadopodea formation and invasion. In hypoxia/serum starvation excess NM23-H1 effectively modulated the Twist1 promoter activity. Thus, differential regulation of NM23-H1 may corroborate/abrogate EMT depending on the nature of stress, tumor microenvironment and cellular context.


Subject(s)
NM23 Nucleoside Diphosphate Kinases/metabolism , Neoplasms/enzymology , Neoplasms/pathology , Cell Differentiation/physiology , Cell Hypoxia/physiology , Cell Line, Tumor , Epithelial-Mesenchymal Transition , Gene Knockdown Techniques , Humans , MCF-7 Cells , NM23 Nucleoside Diphosphate Kinases/genetics , Neoplasm Metastasis , Neoplasms/genetics , Transfection , Tumor Microenvironment
14.
Medchemcomm ; 8(11): 2115-2124, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-30108729

ABSTRACT

Herein, we report the isolation and synthetic modification of dehydrozingerone (DHZ, 1), a secondary metabolite present in the rhizome of Zingiber officinale. We synthesized O-propargylated dehydrozingerone, which was subsequently coupled by alkyne-azide cycloaddition (3-20) using click chemistry. The compounds (1-20) were evaluated for their in vitro cytotoxic activity in a panel of three cancer cell lines. Among all the DHZ derivatives, 3, 6, 7, 8, 9 and 15 displayed potent cytotoxic potential with an IC50 value ranging from 1.8-3.0 µM in MCF-7, PC-3 and HCT-116 cell lines. Furthermore, compound 7 has proven to be the most potent cytotoxic compound in all the three distinct cancer cell lines and also demonstrated significant anti-invasive potential in prostate cancer. The mechanistic study of compound 7 showed that it not only suppressed the AKT/mTOR signalling which regulates nuclear transcription factor-NF-kB but also augmented the expression of anti-invasive markers E-cadherin and TIMP. Compound 7 significantly decreased the expression of pro-invasive markers vimentin, MMP-2 and MMP-9, respectively. This study underscores an efficient synthetic approach employed to evaluate the structure-activity relationship of dehydrozingerone (1) in search of potential new anticancer agents.

15.
Clin Exp Metastasis ; 33(8): 757-764, 2016 12.
Article in English | MEDLINE | ID: mdl-27568374

ABSTRACT

Prostate apoptotic response 4 (Par-4) is coined as a therapeutic protein since owing to its diverse physiologically relevant properties, especially in the cancer perspective. Albeit, Par-4 expression is not restricted to any specific tissue/organ, apart from cell death promotion (due to challenging threats), the other biological role of Par-4 is convincingly emerging. In the recent years, several laboratories have intended to dissect the signaling or mechanisms involved in Par-4 activation to augment apoptosis cascades but new developments in Par-4 research have widened its therapeutic potential. One of these important avenues is the prevention of metastasis by pro-apoptotic Par-4. In this review, we will focus on the therapeutic perspective of Par-4 with a special reference to its (Par-4) virgin prospect of devastating metastasis control.


Subject(s)
Apoptosis Regulatory Proteins/genetics , Apoptosis/genetics , Neoplasm Metastasis/genetics , Apoptosis Regulatory Proteins/biosynthesis , Gene Expression Regulation, Neoplastic/genetics , Humans , Signal Transduction
16.
Age (Dordr) ; 38(3): 62, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27246693

ABSTRACT

Stress-induced premature senescence (SIPS) is quite similar to replicative senescence that is committed by cells exposed to various stress conditions viz. ultraviolet radiation (DNA damage), hydrogen peroxide (oxidative stress), chemotherapeutic agents (cytotoxic threat), etc. Here, we report that cristacarpin, a natural product obtained from the stem bark of Erythrina suberosa, promotes endoplasmic reticulum (ER) stress, leading to sub-lethal reactive oxygen species (ROS) generation and which eventually terminates by triggering senescence in pancreatic and breast cancer cells through blocking the cell cycle in the G1 phase. The majority of cristacarpin-treated cells responded to conventional SA-ß-gal stains; showed characteristic p21(waf1) upregulation along with enlarged and flattened morphology; and increased volume, granularity, and formation of heterochromatin foci-all of these features are the hallmarks of senescence. Inhibition of ROS generation by N-acetyl-L-cysteine (NAC) significantly reduced the expression of p21(waf1), confirming that the modulation in p21(waf1) by anti-proliferative cristacarpin was ROS dependent. Further, the elevation in p21(waf1) expression in PANC-1 and MCF-7 cells was consistent with the decrease in the expression of Cdk-2 and cyclinD1. Here, we provide evidence that cristacarpin promotes senescence in a p53-independent manner. Moreover, cristacarpin treatment induced p38MAPK, indicating the ROS-dependent activation of the MAP kinase pathway, and thus abrogates the tumor growth in mouse allograft tumor model.


Subject(s)
Aging/genetics , Cyclin-Dependent Kinase Inhibitor p21/genetics , DNA Damage/drug effects , Endoplasmic Reticulum Stress/drug effects , Oxidative Stress , Pterocarpans/pharmacology , Aging/drug effects , Animals , Cell Cycle/drug effects , Cellular Senescence/drug effects , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Female , Flow Cytometry , Humans , Immunoblotting , Mice , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects
17.
ACS Med Chem Lett ; 6(10): 1071-4, 2015 Oct 08.
Article in English | MEDLINE | ID: mdl-26487914

ABSTRACT

The present work describes the anti-invasive effect of conjugate BC06, a novel conjugate of EPA, (2E,4E)-4-(benzo[d][1,3]dioxol-5-ylmethylene) hex-2-enoic acid with ß,ß-disubstituted-ß-amino acid, ß(3,3)-Pip-OH (2-(4-aminopiperidin-4-yl)acetic acid), in human pancreatic carcinoma. The conjugate BC06 inhibited invasion and migration of PANC-1 cells in wound healing, matrigel invasion, and gelatin degradation assays. Apart from suppressing PI3K/Akt/NF-kB signaling, which is involved in the up-regulation of matrix metalloproteinases, our study also demonstrated that dose-dependent treatment of BC06 results in the upregulation of TIMP-1 and E-cadherin expression. Further, BC06 was found to be inhibiting the metastatic ability of PANC-1 cells by reducing MMP-2 and MMP-9 expression. These findings suggest that EPA conjugate with ß(3,3)-Pip-OH, BC06, may be used as an anti-invasive agent against human pancreatic carcinoma.

18.
J Med Chem ; 58(8): 3432-44, 2015 Apr 23.
Article in English | MEDLINE | ID: mdl-25825934

ABSTRACT

Sclareol, a promising anticancer labdane diterpene, was isolated from Salvia sclarea. Keeping the basic stereochemistry-rich framework of the molecule intact, a method for the synthesis of novel sclareol analogues was designed using palladium(II)-catalyzed oxidative Heck coupling reaction in order to study their structure-activity relationship. Both sclareol and its derivatives showed an interesting cytotoxicity profile, with 15-(4-fluorophenyl)sclareol (SS-12) as the most potent analogue, having IC50 = 0.082 µM against PC-3 cells. It was found that SS-12 commonly interacts with Bcl-2 and Beclin 1 BH3 domain proteins and enhances autophagic flux by modulating autophagy-related proteins. Moreover, inhibition of autophagy by autophagy inhibitors protected against SS-12-induced apoptosis. Finally, SS-12 effectively suppressed tumor growth in vivo in Ehrlich's ascitic and solid Sarcoma-180 mouse models.


Subject(s)
Diterpenes/chemistry , Diterpenes/therapeutic use , Sarcoma 180/drug therapy , Animals , Apoptosis/drug effects , Apoptosis Regulatory Proteins/metabolism , Autophagy/drug effects , Beclin-1 , Cell Line, Tumor , Diterpenes/pharmacology , Drug Design , Female , Halogenation , Humans , Membrane Proteins/metabolism , Mice , Proto-Oncogene Proteins c-bcl-2/metabolism , Salvia/chemistry , Sarcoma 180/metabolism , Sarcoma 180/pathology , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...