Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
Add more filters










Publication year range
2.
Am J Clin Nutr ; 118(5): 938-955, 2023 11.
Article in English | MEDLINE | ID: mdl-37657523

ABSTRACT

BACKGROUND: There is increasing interest in the bidirectional relationship existing between the gut and brain and the effects of both oligofructose and 2'fucosyllactose to alter microbial composition and mood state. Yet, much remains unknown about the ability of oligofructose and 2'fucosyllactose to improve mood state via targeted manipulation of the gut microbiota. OBJECTIVES: We aimed to compare the effects of oligofructose and 2'fucosyllactose alone and in combination against maltodextrin (comparator) on microbial composition and mood state in a working population. METHODS: We conducted a 5-wk, 4-arm, parallel, double-blind, randomized, placebo-controlled trial in 92 healthy adults with mild-to-moderate levels of anxiety and depression. Subjects were randomized to oligofructose 8 g/d (plus 2 g/d maltodextrin); maltodextrin 10 g/d; oligofructose 8 g/d plus 2'fucosyllactose (2 g/d) or 2'fucosyllactose 2 g/d (plus 8 g/d maltodextrin). Changes in microbial load (fluorescence in situ hybridization-flow cytometry) and composition (16S ribosomal RNA sequencing) were the primary outcomes. Secondary outcomes included gastrointestinal sensations, bowel habits, and mood state parameters. RESULTS: There were significant increases in several bacterial taxa including Bifidobacterium, Bacteroides, Roseburia, and Faecalibacterium prausnitzii in both the oligofructose and oligofructose/2'fucosyllactose interventions (all P ≤ 0.05). Changes in bacterial taxa were highly heterogenous upon 2'fuscoyllactose supplementation. Significant improvements in Beck Depression Inventory, State Trait Anxiety Inventory Y1 and Y2, and Positive and Negative Affect Schedule scores and cortisol awakening response were detected across oligofructose, 2'fucosyllactose, and oligofructose/2'fucosyllactose combination interventions (all P ≤ 0.05). Both sole oligofructose and oligofructose/2'fuscosyllactose combination interventions outperformed both sole 2'fucosyllactose and maltodextrin in improvements in several mood state parameters (all P ≤ 0.05). CONCLUSION: The results of this study indicate that oligofructose and combination of oligofructose/2'fucosyllactose can beneficially alter microbial composition along with improving mood state parameters. Future work is needed to understand key microbial differences separating individual responses to 2'fucosyllactose supplementation. This trial was registered at clinicaltrials.gov as NCT05212545.


Subject(s)
Fructans , Inulin , Adult , Humans , Inulin/pharmacology , Fructans/pharmacology , In Situ Hybridization, Fluorescence , Prebiotics , Oligosaccharides/pharmacology , Oligosaccharides/therapeutic use , Bacteria , Double-Blind Method
3.
J Agric Food Chem ; 70(29): 9048-9056, 2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35830712

ABSTRACT

This study was conducted to investigate the sweetness intensity and the potential fecal microbiome modulation of galactooligosaccharides in combination with enzymatically modified mogrosides (mMV-GOS), both generated through a patented single-pot synthesis. Sweetness intensity was performed in vivo by trained sensory panelists. The impact on the human fecal microbiome was evaluated by in vitro pH-controlled batch fermentation, and bacterial populations and organic acid concentrations were measured by qPCR and GC-FID, respectively. Significant growth (p ≤ 0.05) during the fermentation at 10 h of bacterial populations includes Bifidobacterium (8.49 ± 0.44 CFU/mL), Bacteroides (9.73 ± 0.32 CFU/mL), Enterococcus (8.17 ± 0.42 CFU/mL), and Clostridium coccoides (6.15 ± 0.11 CFU/mL) as compared to the negative control counts for each bacterial group (7.94 ± 0.27, 7.84 ± 1.11, 7.52 ± 0.37, and 5.81 ± 0.08 CFU/mL, respectively) at the same time of fermentation. Likewise, the corresponding significant increase in production of SCFA in mMV-GOS at 10 h of fermentation, mainly seen in acetate (20.32 ± 2.56 mM) and propionate (9.49 ± 1.44 mM) production compared to a negative control at the same time (8.15 ± 1.97 and 1.86 ± 0.24 mM), is in line with a positive control (short-chain fructooligosaccharides; 46.74 ± 12.13 and 6.51 ± 1.91 mM, respectively) revealing a selective fermentation. In conclusion, these substrates could be considered as novel candidate prebiotic sweeteners, foreseeing a feasible and innovative approach targeting the sucrose content reduction in food. This new ingredient could provide health benefits when evaluated in human studies by combining sweetness and prebiotic fiber functionality.


Subject(s)
Fatty Acids, Volatile , Prebiotics , Bacteria/genetics , Bifidobacterium , Feces/microbiology , Fermentation , Humans , Oligosaccharides , Sweetening Agents
4.
J Agric Food Chem ; 69(3): 1011-1019, 2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33428404

ABSTRACT

Luo Han Guo fruit extract (Siraitia grosvenorii), mainly composed of mogroside V (50%), could be considered a suitable alternative to free sugars; however, its commercial applications are limited by its unpleasant off-notes. In the present work, a central composite design method was employed to optimize the transglycosylation of a mogroside extract using cyclodextrin glucosyltransferases (CGTases) from three different bacteriological sources (Paenibacillus macerans, Geobacillus sp., and Thermoanaerobacter sp.) considering various experimental parameters such as maltodextrin and mogroside concentration, temperature, time of reaction, enzymatic activity, and pH. Product structures were determined by liquid chromatography coupled to a diode-array detector (LC-DAD), liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS), and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Sensory analysis of glucosylated mogrosides showed an improvement in flavor attributes relevant to licorice flavor and aftereffect. Consequently, an optimum methodology was developed to produce new modified mogrosides more suitable when formulating food products as free sugar substitutes.


Subject(s)
Bacterial Proteins/chemistry , Cucurbitaceae/chemistry , Glucosides/biosynthesis , Glucosyltransferases/chemistry , Plant Extracts/chemistry , Sweetening Agents/chemical synthesis , Biocatalysis , Chromatography, High Pressure Liquid , Fruit/chemistry , Geobacillus/enzymology , Glucosides/chemistry , Paenibacillus/enzymology , Plant Extracts/chemical synthesis , Spectrometry, Mass, Electrospray Ionization , Sweetening Agents/chemistry , Thermoanaerobacter/enzymology
5.
Foods ; 9(12)2020 Nov 26.
Article in English | MEDLINE | ID: mdl-33256263

ABSTRACT

To improve flavor profiles, three cyclodextrin glucosyltransferases (CGTases) from different bacteriological sources, Paenibacillus macerans, Geobacillus sp. and Thermoanaerobacter sp., were used with an extract of steviol glycosides (SVglys) and rebaudioside A (RebA) as acceptor substrates in two parallel sets of reactions. A central composite experimental design was employed to maximize the concentration of glucosylated species synthesized, considering temperature, pH, time of reaction, enzymatic activity, maltodextrin concentration and SVglys/RebA concentration as experimental factors, together with their interactions. Liquid chromatography coupled to a diode-array detector (LC-DAD), liquid chromatography-mass spectrometry (LC-ESI-MS) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) were used to characterize and identify the chemical structures obtained along the optimization. To assess the impact on the sensory properties, a sensory analysis was carried out with a group of panelists that evaluated up to 16 sensorial attributes. CGTase transglucosylation of the C-13 and/or C-19 led to the addition of up to 11 glucose units to the steviol aglycone, which meant the achievement of enhanced sensory profiles due to a diminution of bitterness and licorice appreciations. The outcome herein obtained supposes the development of new potential alternatives to replace free sugars with low-calorie sweeteners with added health benefits.

6.
Carbohydr Polym ; 236: 116076, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32172889

ABSTRACT

Although most members of the genus Bifidobacterium are unable to utilize xylan as a carbon source, the growth of these species can be induced by this polysaccharide in the gut environment. This indicates a requirement for an association between Bifidobacterium species and some other members of gut microbiota. In this study, the role of cross-feeding between Bifidobacterium and Bacteroides species in the bifidogenic effect of xylan was investigated using in-vitro pure and co-culture fermentations. The pure culture studies showed that among the Bifidobacterium species tested, only Bifidobacterium animalis subsp. lactis was able to utilize xylooligosaccharides. The co-culture of this strain with Bacteroides species enabled it to grow in the presence of xylan. These results suggest that the ability of Bacteroides species to hydrolyze xylan could allow the proliferation of specific Bifidobacterium species in the gut through substrate cross-feeding.


Subject(s)
Bacteroides/metabolism , Bifidobacterium/metabolism , Fermentation , Xylans/metabolism , Coculture Techniques , Glucuronates/metabolism , Oligosaccharides/metabolism
7.
Appl Environ Microbiol ; 86(10)2020 05 05.
Article in English | MEDLINE | ID: mdl-32198169

ABSTRACT

Dietary protein residue can result in microbial generation of various toxic metabolites in the gut, such as ammonia. A prebiotic is "a substrate that is selectively utilised by host microorganisms conferring a health benefit" (G. R. Gibson, R. Hutkins, M. E. Sanders, S. L. Prescott, et al., Nat Rev Gastroenterol Hepatol 14:491-502, 2017, https://doi.org/10.1038/nrgastro.2017.75). Prebiotics are carbohydrates that may have the potential to reverse the harmful effects of gut bacterial protein fermentation. Three-stage continuous colonic model systems were inoculated with fecal samples from omnivore and vegetarian volunteers. Casein (equivalent to 105 g protein consumption per day) was used within the systems as a protein source. Two different doses of inulin-type fructans (Synergy1) were later added (equivalent to 10 g per day in vivo and 15 g per day) to assess whether this influenced protein fermentation. Bacteria were enumerated by fluorescence in situ hybridization with flow cytometry. Metabolites from bacterial fermentation (short-chain fatty acid [SCFA], ammonia, phenol, indole, and p-cresol) were monitored to further analyze proteolysis and the prebiotic effect. A significantly higher number of bifidobacteria was observed with the addition of inulin together with reduction of Desulfovibrio spp. Furthermore, metabolites from protein fermentation, such as branched-chain fatty acids (BCFA) and ammonia, were significantly lowered with Synergy1. Production of p-cresol varied among donors, as we recognized four high producing models and two low producing models. Prebiotic addition reduced its production only in vegetarian high p-cresol producers.IMPORTANCE Dietary protein levels are generally higher in Western populations than in the world average. We challenged three-stage continuous colonic model systems containing high protein levels and confirmed the production of potentially harmful metabolites from proteolysis, especially replicates of the transverse and distal colon. Fermentations of proteins with a prebiotic supplementation resulted in a change in the human gut microbiota and inhibited the production of some proteolytic metabolites. Moreover, we observed both bacterial and metabolic differences between fecal bacteria from omnivore donors and vegetarian donors. Proteins with prebiotic supplementation showed higher Bacteroides spp. and inhibited Clostridium cluster IX in omnivore models, while in vegetarian modes, Clostridium cluster IX was higher and Bacteroides spp. lower with high protein plus prebiotic supplementation. Synergy1 addition inhibited p-cresol production in vegetarian high p-cresol-producing models while the inhibitory effect was not seen in omnivore models.


Subject(s)
Bacterial Physiological Phenomena/drug effects , Diet, High-Protein , Gastrointestinal Microbiome/drug effects , Host Microbial Interactions/drug effects , Prebiotics/administration & dosage , Adult , Humans , In Vitro Techniques , Middle Aged , Proteolysis , Young Adult
9.
Nat Rev Gastroenterol Hepatol ; 16(10): 642, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31399728

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

10.
Appl Microbiol Biotechnol ; 103(16): 6463-6472, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31267231

ABSTRACT

Adhesion ability to the host is a classical selection criterion for potential probiotic bacteria that could result in a transient colonisation that would help to promote immunomodulatory effects, as well as stimulate gut barrier and metabolic functions. In addition, probiotic bacteria have a potential protective role against enteropathogens through different mechanisms including production of antimicrobial compounds, reduction of pathogenic bacterial adhesion and competition for host cell binding sites. The competitive exclusion by probiotic bacteria has a beneficial effect not only on the gut but also in the urogenital tract and oral cavity. On the other hand, prebiotics may also act as barriers to pathogens and toxins by preventing their adhesion to epithelial receptors. In vitro studies with different intestinal cell lines have been widely used along the last decades to assess the adherence ability of probiotic bacteria and pathogen antagonism. However, extrapolation of these results to in vivo conditions still remains unclear, leading to the need of optimisation of more complex in vitro approaches that include interaction with the resident microbiota to address the current limitations. The aim of this mini review is to provide a comprehensive overview on the potential effect of the adhesive properties of probiotics and prebiotics on the host by focusing on the most recent findings related with adhesion and immunomodulatory and antipathogenic effect on human health.


Subject(s)
Bacterial Adhesion , Epithelial Cells/drug effects , Epithelial Cells/microbiology , Prebiotics/administration & dosage , Probiotics/administration & dosage , Antibiosis , Humans , Immunologic Factors/administration & dosage
11.
Nat Rev Gastroenterol Hepatol ; 16(10): 605-616, 2019 10.
Article in English | MEDLINE | ID: mdl-31296969

ABSTRACT

Probiotics and prebiotics are microbiota-management tools for improving host health. They target gastrointestinal effects via the gut, although direct application to other sites such as the oral cavity, vaginal tract and skin is being explored. Here, we describe gut-derived effects in humans. In the past decade, research on the gut microbiome has rapidly accumulated and has been accompanied by increased interest in probiotics and prebiotics as a means to modulate the gut microbiota. Given the importance of these approaches for public health, it is timely to reiterate factual and supporting information on their clinical application and use. In this Review, we discuss scientific evidence on probiotics and prebiotics, including mechanistic insights into health effects. Strains of Lactobacillus, Bifidobacterium and Saccharomyces have a long history of safe and effective use as probiotics, but Roseburia spp., Akkermansia spp., Propionibacterium spp. and Faecalibacterium spp. show promise for the future. For prebiotics, glucans and fructans are well proven, and evidence is building on the prebiotic effects of other substances (for example, oligomers of mannose, glucose, xylose, pectin, starches, human milk and polyphenols).


Subject(s)
Gastrointestinal Diseases/microbiology , Gastrointestinal Diseases/therapy , Gastrointestinal Microbiome/physiology , Prebiotics , Probiotics , Gastrointestinal Diseases/physiopathology , Gastrointestinal Diseases/prevention & control , Humans , Prebiotics/microbiology , Probiotics/therapeutic use
13.
Appl Environ Microbiol ; 85(9)2019 05 01.
Article in English | MEDLINE | ID: mdl-30824442

ABSTRACT

Metabolism of protein by gut bacteria is potentially detrimental due to the production of toxic metabolites, such as ammonia, amines, p-cresol, and indole. The consumption of prebiotic carbohydrates results in specific changes in the composition and/or activity of the microbiota that may confer benefits to host well-being and health. Here, we have studied the impact of prebiotics on proteolysis within the gut in vitro Anaerobic stirred batch cultures were inoculated with feces from omnivores (n = 3) and vegetarians (n = 3) and four protein sources (casein, meat, mycoprotein, and soy protein) with and without supplementation by an oligofructose-enriched inulin. Bacterial counts and concentrations of short-chain fatty acids (SCFA), ammonia, phenol, indole, and p-cresol were monitored during fermentation. Addition of the fructan prebiotic Synergy1 increased levels of bifidobacteria (P = 0.000019 and 0.000013 for omnivores and vegetarians, respectively). Branched-chain fatty acids (BCFA) were significantly lower in fermenters with vegetarians' feces (P = 0.004), reduced further by prebiotic treatment. Ammonia production was lower with Synergy1. Bacterial adaptation to different dietary protein sources was observed through different patterns of ammonia production between vegetarians and omnivores. In volunteer samples with high baseline levels of phenol, indole, p-cresol, and skatole, Synergy1 fermentation led to a reduction of these compounds.IMPORTANCE Dietary protein intake is high in Western populations, which could result in potentially harmful metabolites in the gut from proteolysis. In an in vitro fermentation model, the addition of prebiotics reduced the negative consequences of high protein levels. Supplementation with a prebiotic resulted in a reduction of proteolytic metabolites in the model. A difference was seen in protein fermentation between omnivore and vegetarian gut microbiotas: bacteria from vegetarian donors grew more on soy and Quorn than on meat and casein, with reduced ammonia production. Bacteria from vegetarian donors produced less branched-chain fatty acids (BCFA).


Subject(s)
Bacteria/metabolism , Diet , Gastrointestinal Microbiome , Prebiotics/administration & dosage , Adult , Feces/microbiology , Fermentation , Humans , Middle Aged , Proteolysis , Young Adult
14.
3 Biotech ; 9(3): 93, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30800604

ABSTRACT

Copra meal hydrolysate (CMH) is obtained by hydrolyzing defatted copra meal with ß-mannanase from Bacillus circulans NT 6.7. In this study, we investigated the resistance of CMH to upper gastrointestinal tract digestion and the fecal fermentation profiles of CMH. Fecal slurries from four healthy human donors were used as inocula, and fructooligosaccharides (FOS) were used as a positive prebiotic control. Fecal batch cultures were performed at 37 °C under anaerobic conditions. Samples were collected at 0, 10, 24 and 34 h for bacterial enumeration via fluorescent in situ hybridization and organic acid (OA) analysis. In vitro gastric stomach and human pancreatic α-amylase simulations demonstrated that CMH was highly resistant to hydrolysis. Acetate was the main fermentation product of all the substrates. The proportions of acetate production of the total OAs from FOS, CMH and yeast mannooligosaccharides (MOS) after 34 h of fermentation did not significantly differ (69.76, 65.24 and 53.93%, respectively). At 24 h of fermentation, CMH promoted the growth of Lactobacillus and Bifidobacterium groups (P < 0.01) and did not significantly differ from the results obtained using FOS. The results of in vitro fecal fermentation of CMH indicate that CMH can promote the growth of beneficial bacteria.

15.
mSphere ; 4(1)2019 01 23.
Article in English | MEDLINE | ID: mdl-30674645

ABSTRACT

Woody biomass is a sustainable and virtually unlimited source of hemicellulosic polysaccharides. The predominant hemicelluloses in softwood and hardwood are galactoglucomannan (GGM) and arabinoglucuronoxylan (AGX), respectively. Based on the structure similarity with common dietary fibers, GGM and AGX may be postulated to have prebiotic properties, conferring a health benefit on the host through specific modulation of the gut microbiota. In this study, we evaluated the prebiotic potential of acetylated GGM (AcGGM) and highly acetylated AGX (AcAGX) obtained from Norwegian lignocellulosic feedstocks in vitro In pure culture, both substrates selectively promoted the growth of Bifidobacterium, Lactobacillus, and Bacteroides species in a manner consistent with the presence of genetic loci for the utilization of ß-manno-oligosaccharides/ß-mannans and xylo-oligosaccharides/xylans. The prebiotic potential of AcGGM and AcAGX was further assessed in a pH-controlled batch culture fermentation system inoculated with healthy adult human feces. Results were compared with those obtained with a commercial fructo-oligosaccharide (FOS) mixture. Similarly to FOS, both substrates significantly increased (P < 0.05) the Bifidobacterium population. Other bacterial groups enumerated were unaffected with the exception of an increase in the growth of members of the Bacteroides-Prevotella group, Faecalibacterium prausnitzii, and clostridial cluster IX (P < 0.05). Compared to the other substrates, AcGGM promoted butyrogenic fermentation whereas AcAGX was more propiogenic. Although further in vivo confirmation is necessary, these results demonstrate that both AcGGM and AcAGX from lignocellulosic feedstocks can be used to direct the promotion of beneficial bacteria, thus exhibiting a promising prebiotic ability to improve or restore gut health.IMPORTANCE The architecture of the gut bacterial ecosystem has a profound effect on the physiology and well-being of the host. Modulation of the gut microbiota and the intestinal microenvironment via administration of prebiotics represents a valuable strategy to promote host health. This work provides insights into the ability of two novel wood-derived preparations, AcGGM and AcAGX, to influence human gut microbiota composition and activity. These compounds were selectively fermented by commensal bacteria such as Bifidobacterium, Bacteroides-Prevotella, F. prausnitzii, and clostridial cluster IX spp. This promoted the microbial synthesis of acetate, propionate, and butyrate, which are beneficial to the microbial ecosystem and host colonic epithelial cells. Thus, our results demonstrate potential prebiotic properties for both AcGGM and AcAGX from lignocellulosic feedstocks. These findings represent pivotal requirements for rationally designing intervention strategies based on the dietary supplementation of AcGGM and AcAGX to improve or restore gut health.


Subject(s)
Bacteria/growth & development , Dietary Fiber , Gastrointestinal Microbiome/drug effects , Mannans/metabolism , Microbiota/drug effects , Prebiotics , Wood/chemistry , Bacteria/classification , Bacteria/drug effects , Bacteria/metabolism , Fermentation , Humans , Hydrogen-Ion Concentration , Mannans/isolation & purification , Microbiological Techniques
16.
Carbohydr Polym ; 199: 482-491, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30143153

ABSTRACT

The suitability of artichoke and sunflower by-products as renewable sources of pectic compounds with prebiotic potential was evaluated by studying their ability to modulate the human faecal microbiota in vitro. Bacterial populations and short-chain fatty acid (SCFA) production were measured. Reduction of the molecular weight of artichoke pectin resulted in greater stimulation of the growth of Bifidobacterium, Lactobacillus and Bacteroides/Prevotella, whilst this effect was observed only in Bacteroides/Prevotella for sunflower samples. In contrast, the degree of methoxylation did not have any impact on fermentability properties or SCFA production, regardless of the origin of pectic compounds. Although further in vivo studies should be conducted, either pectin or enzymatically-modified pectin from sunflower and artichoke by-products might be considered as prebiotic candidates for human consumption showing similar ability to promote the in vitro growth of beneficial gut bacteria as compared to well-recognized prebiotics such as inulin or fructo-oligosaccharides.


Subject(s)
Fermentation , Pectins/metabolism , Adult , Bacteroides/growth & development , Bacteroides/metabolism , Bifidobacterium/growth & development , Bifidobacterium/metabolism , Citrus/chemistry , Cynara scolymus/chemistry , Enterococcus/growth & development , Enterococcus/metabolism , Eubacterium/growth & development , Eubacterium/metabolism , Fatty Acids, Volatile/analysis , Feces/microbiology , Female , Gastrointestinal Microbiome/drug effects , Helianthus/chemistry , Humans , Lactobacillus/growth & development , Lactobacillus/metabolism , Male , Pectins/chemistry , Pectins/isolation & purification , Prebiotics , Prevotella/growth & development , Prevotella/metabolism
17.
Eur J Nutr ; 57(Suppl 1): 1-14, 2018 May.
Article in English | MEDLINE | ID: mdl-29748817

ABSTRACT

The 2017 annual symposium organized by the University Medical Center Groningen in The Netherlands focused on the role of the gut microbiome in human health and disease. Experts from academia and industry examined interactions of prebiotics, probiotics, or vitamins with the gut microbiome in health and disease, the development of the microbiome in early-life and the role of the microbiome on the gut-brain axis. The gut microbiota changes dramatically during pregnancy and intrinsic factors (such as stress), in addition to extrinsic factors (such as diet, and drugs) influence the composition and activity of the gut microbiome throughout life. Microbial metabolites, e.g. short-chain fatty acids affect gut-brain signaling and the immune response. The gut microbiota has a regulatory role on anxiety, mood, cognition and pain which is exerted via the gut-brain axis. Ingestion of prebiotics or probiotics has been used to treat a range of conditions including constipation, allergic reactions and infections in infancy, and IBS. Fecal microbiota transplantation (FMT) highly effective for treating recurrent Clostridium difficile infections. The gut microbiome affects virtually all aspects of human health, but the degree of scientific evidence, the models and technologies and the understanding of mechanisms of action vary considerably from one benefit area to the other. For a clinical practice to be broadly accepted, the mode of action, the therapeutic window, and potential side effects need to thoroughly be investigated. This calls for further coordinated state-of-the art research to better understand and document the human gut microbiome's effects on human health.


Subject(s)
Health Status , Microbiota/physiology , Brain/physiology , Clostridium Infections , Diet , Fatty Acids, Volatile , Female , Fermentation , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/physiology , Humans , Hypersensitivity , Immunity , Inflammatory Bowel Diseases , Intestines/growth & development , Intestines/microbiology , Netherlands , Prebiotics/administration & dosage , Pregnancy , Probiotics/administration & dosage , Signal Transduction , Vitamins/administration & dosage
18.
Carbohydr Polym ; 179: 50-58, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29111070

ABSTRACT

Xylo-oligosaccharides and xylo-polysaccharides (XOS, XPS) produced by autohydrolysis of the fibre from oil palm empty fruit bunches (OPEFB) were purified using gel filtration chromatography to separate the XOS and XPS from the crude autohydrolysis liquor. Six mixed fractions of refined XOS and XPS with average degree of polymerisation (avDP) of 4-64 were obtained. These were characterised in terms of their composition and size by HPLC, MALDI-ToF-MS (selected fractions) and carbohydrate gel electrophoresis (PACE). They were assessed in batch culture fermentations using faecal inocula to determine their ability to modulate the human faecal microbiota in vitro by measuring the bacterial growth, organic acid production and the XOS assimilation profile. The gut microbiota was able to utilise all the substrates and there was a link between the avDP with the fermentation properties. In general, XOS/XPS preparations of lower avDP promote better Bifidobacterium growth and organic acid production.


Subject(s)
Feces/microbiology , Fermentation , Gastrointestinal Microbiome , Oligosaccharides/chemistry , Oligosaccharides/metabolism , Polysaccharides/chemistry , Polysaccharides/metabolism , Bifidobacterium/growth & development , Bifidobacterium/metabolism , Biotechnology , Cocos/chemistry , Complex Mixtures/chemistry , Humans , Hydrogen-Ion Concentration , Hydrolysis , Molecular Weight , RNA, Ribosomal, 16S/genetics
19.
Nutrients ; 9(12)2017 Dec 20.
Article in English | MEDLINE | ID: mdl-29261110

ABSTRACT

A dietary prebiotic is defined as 'a substrate that is selectively utilized by host microorganisms conferring a health benefit'. Although this definition evolved concomitantly with the knowledge and technological developments that accrued in the last twenty years, what qualifies as prebiotic continues to be a matter of debate. In this statement, we report the outcome of a workshop where academic experts working in the field of prebiotic research met with scientists from industry. The workshop covered three main topics: (i) evolution of the prebiotic concept/definition; (ii) the gut modeling in vitro technology PolyFermS to study prebiotic effects; and (iii) the potential novel microbiome-modulating effects associated with vitamins. The future of prebiotic research is very promising. Indeed, the technological developments observed in recent years provide scientists with powerful tools to investigate the complex ecosystem of gut microbiota. Combining multiple in vitro approaches with in vivo studies is key to understanding the mechanisms of action of prebiotics consumption and their potential beneficial effects on the host.


Subject(s)
Gastrointestinal Microbiome , Prebiotics , Research/standards , Animals , Diet , Gastrointestinal Tract/microbiology , Humans , Microbiota , Nutritional Physiological Phenomena , Terminology as Topic
20.
Food Chem ; 227: 245-254, 2017 Jul 15.
Article in English | MEDLINE | ID: mdl-28274429

ABSTRACT

Shiga toxin (Stx)-producing, food-contaminating Escherichia coli (STEC) is a major health concern. Plant-derived pectin and pectic-oligosaccharides (POS) have been considered as prebiotics and for the protection of humans from Stx. Of five structurally different citrus pectic samples, POS1, POS2 and modified citrus pectin 1 (MCP1) were bifidogenic with similar fermentabilities in human faecal cultures and arabinose-rich POS2 had the greatest prebiotic potential. Pectic oligosaccharides also enhanced lactobacilli growth during mixed batch faecal fermentation. We demonstrated that all pectic substrates were anti-adhesive for E. coli O157:H7 binding to human HT29 cells. Lower molecular weight and deesterification enhanced the anti-adhesive activity. We showed that all pectic samples reduced Stx2 cytotoxicity in HT29 cells, as measured by the reduction of human rRNA depurination detected by our novel TaqMan-based RT-qPCR assay, with POS1 performing the best. POS1 competes with Stx2 binding to the Gb3 receptor based on ELISA results, underlining the POS anti-STEC properties.


Subject(s)
Bacterial Adhesion , Escherichia coli Infections/microbiology , Escherichia coli O157/physiology , Oligosaccharides/chemistry , Pectins/metabolism , Prebiotics/analysis , Shiga Toxin/toxicity , Escherichia coli O157/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Feces/microbiology , HT29 Cells , Humans , Oligosaccharides/metabolism , Pectins/chemistry , Shiga Toxin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...