Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Eur J Hum Genet ; 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38177408

ABSTRACT

The North Caucasus played a key role during the ancient colonization of Eurasia and the formation of its cultural and genetic ancestry. Previous archeogenetic studies described a relative genetic and cultural continuity of ancient Caucasus societies, since the Eneolithic period. The Koban culture, which formed in the Late Bronze Age on the North Caucasian highlands, is considered as a cultural "bridge" between the ancient and modern autochthonous peoples of the Caucasus. Here, we discuss the place of this archeological culture and its representatives in the genetic orbit of Caucasian cultures using genome-wide SNP data from five individuals of the Koban culture and one individual of the early Alanic culture as well as previously published genomic data of ancient and modern North Caucasus individuals. Ancient DNA analysis shows that an ancient individual from Klin-Yar III, who was previously described as male, was in fact a female. Additional studies on well-preserved ancient human specimens are necessary to determine the level of local mobility and kinship between individuals in ancient societies of North Caucasus. Further studies with a larger sample size will allow us gain a deeper understanding of this topic.

2.
Genes (Basel) ; 13(10)2022 10 14.
Article in English | MEDLINE | ID: mdl-36292743

ABSTRACT

Pacific herring (Clupea pallasii) is an essential target of commercial fishing in the North Pacific Ocean. Previous studies have suggested the existence of marine and lake ecological forms of this species within its range. The lake ecological form of herring has a shortened life cycle, spending the winter and spawning in brackish waters near the shoreline without long migrations for feeding; it also has a relatively smaller body size than the marine form. Genetic-based studies have shown that brackish water Pacific herring not only can be distinguished as a separate lake ecological form but possibly has its genetic legacy. Here, as part of an ongoing study, using ddRAD-sequencing data for marine and lake ecological forms from a total of 54 individuals and methods of comparative bioinformatics, we describe genomic signatures of freshwater adaptivity in Pacific herring. In total, 253 genes containing discriminating SNPs were found, and part of those genes was organized into genome clusters, also known as "genomic islands of divergence". Moreover, the Tajima's D test showed that these loci are under directional selection in the lake populations of the Pacific herring. Yet, most discriminating loci between the lake and marine ecological forms of Pacific herring do not intersect (by gene name) with those in other known marine fish species with known freshwater/brackish populations. However, some are associated with the same physiological trait-osmoregulation.


Subject(s)
Adaptation, Physiological , Lakes , Animals , Adaptation, Physiological/genetics , Pacific Ocean , Genomics
4.
Mol Phylogenet Evol ; 167: 107346, 2022 02.
Article in English | MEDLINE | ID: mdl-34763069

ABSTRACT

Five ecologically and phenotypically divergent ecomorphs of the genus Salmo are known from a landlocked alpine lake in the Caucasus, Lake Sevan. It is an example of sympatric diversification within a species-rich lineage with predominate mode of speciation being allopatric. The diversification of Sevan trouts was accompanied by spawning resource partitioning. Four lacustrine ecomorphs with different temporal-spatial spawning strategies and divergent morphology and coloration evolved along with a fifth ecomorph, brook trout, inhabiting the tributaries. Unfortunately, the Sevan trout diversity was almost destroyed by human activity, with two ecomorphs becoming extinct in the 1980s. We performed reconstruction of the evolutionary history of Sevan trouts based on high-throughput sequencing of both contemporary and historical DNA (∼ 50 y.o.) of all Sevan trout ecomorphs. Our study of complete mitogenomes along with genome-wide SNP data revealed the monophyly of four lacustrine ecomorphs and local brook trout, all derived from the anadromous form Caspian salmon, S. caspius. The species tree suggests a scenario of stepwise evolution from riverine to lacustrine spawning. Three genomic clusters were revealed, of which two refer to the riverine and lacustrine spawners within the flock of Sevan trouts (with FST value = 0.069). A few SNP outliers under selection were discovered that could be responsible for assortative mating based on visual recognition. The Holocene climatic oscillations and the desiccation of tributaries could have played an important role in the origin of lacustrine spawning. The relationships between lacustrine ecomorphs were not yet fully resolved. This radiation warrants further investigation.


Subject(s)
Genomics , Trout , Animals , Lakes , Phylogeny , Sympatry , Trout/genetics
5.
Nat Commun ; 12(1): 2215, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33850161

ABSTRACT

Anthropogenic activity is the top factor directly related to the extinction of several animal species. The last Steller's sea cow (Hydrodamalis gigas) population on the Commander Islands (Russia) was wiped out in the second half of the 18th century due to sailors and fur traders hunting it for the meat and fat. However, new data suggests that the extinction process of this species began much earlier. Here, we present a nuclear de novo assembled genome of H. gigas with a 25.4× depth coverage. Our results demonstrate that the heterozygosity of the last population of this animal is low and comparable to the last woolly mammoth population that inhabited Wrangel Island 4000 years ago. Besides, as a matter of consideration, our findings also demonstrate that the extinction of this marine mammal starts along the North Pacific coastal line much earlier than the first Paleolithic humans arrived in the Bering sea region.


Subject(s)
Dugong/genetics , Genome , Animals , DNA, Mitochondrial/genetics , Dugong/classification , Extinction, Biological , Humans , Mutation , Phylogeny , Polymorphism, Single Nucleotide , Russia , Sequence Analysis, DNA
6.
Ecol Evol ; 10(12): 5431-5439, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32607164

ABSTRACT

Common carp (Cyprinus carpio) has an outstanding economic importance in freshwater aquaculture due to its high adaptive capacity to both food and environment. In fact, it is the third most farmed fish species worldwide according to the Food and Agriculture Organization. More than four million tons of common carp are produced annually in aquaculture, and more than a hundred thousand tons are caught from the wild. Historically, the common carp was also the first fish species to be domesticated in ancient China, and now, there is a huge variety of domestic carp strains worldwide. In the present study, we used double digestion restriction site-associated DNA sequencing to genotype several European common carp strains and showed that they are divided into two distinct groups. One of them includes central European common carp strains as well as Ponto-Caspian wild common carp populations, whereas the other group contains several common carp strains that originated in the Soviet Union, mostly as cold-resistant strains. We believe that breeding with wild Amur carp and subsequent selection of the hybrids for resistance to adverse environmental conditions was the attribute of the second group. We assessed the contribution of wild Amur carp inheritance to the common carp strains and discovered discriminating genes, which differed in allele frequencies between groups. Taken together, our results improve our current understanding of the genetic variability of common carp, namely the structure of natural and artificial carp populations, and the contribution of wild carp traits to domestic strains.

7.
Sci Rep ; 10(1): 722, 2020 01 20.
Article in English | MEDLINE | ID: mdl-31959974

ABSTRACT

The enigmatic and poorly studied sturgeon genus Pseudoscaphirhynchus (Scaphirhynchinae: Acipenseridae) comprises three species: the Amu Darya shovelnose sturgeon (Pseudoscaphirhynchus kaufmanni (Bogdanow)), dwarf Amu Darya shovelnose sturgeon P. hermanni (Kessler), and Syr Darya shovelnose sturgeon (P. fedtschenkoi (Bogdanow). Two species - P. hermanni and P. kaufmanni - are critically endangered due to the Aral Sea area ecological disaster, caused by massive water use for irrigation to support cotton agriculture, subsequent pesticide pollution and habitat degradation. For another species - P. fedtschenkoi - no sightings have been reported since 1960-s and it is believed to be extinct, both in nature and in captivity. In this study, complete mitochondrial (mt) genomes of these three species of Pseudoscaphirhynchus were characterized using Illumina and Sanger sequencing platforms. Phylogenetic analyses showed the significant divergence between Amu Darya and Syr Darya freshwater sturgeons and supported the monophyletic origin of the Pseudoscaphirhynchus species. We confirmed that two sympatric Amu Darya species P. kaufmanni and P. hermanni form a single genetic cluster, which may require further morphological and genetic study to assess possible hybridization, intraspecific variation and taxonomic status and to develop conservation measures to protect these unique fishes.


Subject(s)
Endangered Species , Fishes/genetics , Genome, Mitochondrial , Phylogeny , Animals , Asia, Central , Ecosystem , Extinction, Biological , Fishes/classification , Hydrobiology , Species Specificity , Water Pollution, Chemical
8.
PLoS One ; 14(12): e0226485, 2019.
Article in English | MEDLINE | ID: mdl-31869362

ABSTRACT

Body size reduction, also known as miniaturization, is an important evolutionary process that affects a number of physiological and phenotypic traits and helps animals conquer new ecological niches. However, this process is poorly understood at the molecular level. Here, we report genomic and transcriptomic features of arguably the smallest known insect-the parasitoid wasp, Megaphragma amalphitanum (Hymenoptera: Trichogrammatidae). In contrast to expectations, we find that the genome and transcriptome sizes of this parasitoid wasp are comparable to other members of the Chalcidoidea superfamily. Moreover, compared to other chalcid wasps the gene content of M. amalphitanum is remarkably conserved. Intriguingly, we observed significant changes in M. amalphitanum transposable element dynamics over time, in which an initial burst was followed by suppression of activity, possibly due to a recent reinforcement of the genome defense machinery. Overall, while the M. amalphitanum genomic data reveal certain features that may be linked to the unusual biological properties of this organism, miniaturization is not associated with a large decrease in genome complexity.


Subject(s)
Body Size/genetics , Genome, Insect , Wasps/genetics , Adaptation, Biological/genetics , Animals , Chromosome Mapping , Ecosystem , Evolution, Molecular , Genes, Insect , Genetic Speciation , Host-Parasite Interactions/genetics , Immune System/metabolism , Molecular Sequence Annotation , Sequence Analysis, DNA , Transcriptome/genetics , Venoms/genetics , Wasps/anatomy & histology , Wasps/immunology , Wasps/pathogenicity
9.
Mitochondrial DNA A DNA Mapp Seq Anal ; 30(4): 626-631, 2019 05.
Article in English | MEDLINE | ID: mdl-30968730

ABSTRACT

The high-capacity DNA analysis of museum samples opens new opportunities, associated with the investigation of extinct species evolution. Here, the complete mitochondrial genome of the presumably extinct bird species, the slender-billed curlew Numenius tenuirostris (Charadriiformes: Scolopacidae) is presented. Our results showed that mitochondrial DNA (mtDNA) is 16,705 base pairs (bp) in length and contain 13 protein-coding genes, two rRNA genes, and 22 tRNA genes. The overall base composition of the genome is 30.8% - A, 29.8% - C, 25.4% - T, 14.0% - G, and without a significant GC bias of 43.7%. Phylogenetic analyses based on the cytochrome B (cytB) gene and the whole mtDNA sequences revealed that N. tenuirostris had a close genetic relationship to Eurasian curlew (N. arquata), Far Eastern curlew (N. madagascariensis), and long-billed curlew - N. americanus. Besides, it reveals that Numenius genus is genetically distant from other Scolopacidae taxons. Together, these results provide a clear genetic perspective into the speciation process among the curlew genus members and points to a clear taxonomic position of N. tenuirostris.


Subject(s)
Charadriiformes/classification , Charadriiformes/genetics , Extinction, Biological , Phylogeny , Animals , Cytochromes b/genetics , DNA, Mitochondrial/genetics , Genome, Mitochondrial/genetics , RNA/genetics , Sequence Analysis, DNA , Species Specificity
10.
Genomics ; 111(6): 1543-1546, 2019 12.
Article in English | MEDLINE | ID: mdl-30352279

ABSTRACT

The Steller's sea cow - Hydrodamalis gigas (Dugongidae: Sirenia) - is an extinct herbivorous marine mammal which inhabited the North Pacific Ocean during the Pleistocene and Holocene. H. gigas was the largest member of the Sirenia order and disappeared in the middle of the 18th century. Here, we present the complete sequence of the mitochondrial genome of this extinct animal. The Steller's sea cow mitochondrial DNA (mtDNA) is 16,872 base pairs (bp) in length and contains a set of mitochondrial genes typical for mammals. Phylogenetic analysis based on complete mitochondrial genomes of the sirenian species allows accurate assessment of the degree of their mitogenomic diversification during millions of years of evolution.


Subject(s)
DNA, Mitochondrial/genetics , Dugong/growth & development , Genome, Mitochondrial , Phylogeny , Animals
11.
Mitochondrial DNA B Resour ; 5(1): 243-245, 2019 Dec 13.
Article in English | MEDLINE | ID: mdl-33366505

ABSTRACT

The complete mitochondrial genome from the Pleistocene stallion horse (Equus cf. lenensis) which complete skull was found in 1901 on Kotelny Island (New Siberian Archipelago, Sakha Republic, Russia) is published in this paper. The mitochondrial DNA (mtDNA) is 16,584 base pairs (bp) in length and contained 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes. The overall base composition of the genome in descending order was 32.3% - A, 28.5% - C, 13.4% - G, 25.8% - T without a significant AT bias of 58.2%.

12.
Mitochondrial DNA B Resour ; 3(2): 469-471, 2018 Apr 23.
Article in English | MEDLINE | ID: mdl-33474207

ABSTRACT

The two complete mitochondrial genomes of endangered form of the Sevan trout Salmo ischchan aestivalis are published in this paper. The mitochondrial DNA (mtDNA) is 16,677 base pairs (bp) in length and contained 13 protein-coding genes, 2 rRNA genes, and 22 tRNA genes. The overall base composition of the genome in descending order was 29.4% - C, 27.9% - A, 26.0% - T, 16.7% - G, without a significant AT bias of 53.9%.

13.
Mol Biol Evol ; 34(9): 2203-2213, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28873953

ABSTRACT

The three-spined stickleback (Gasterosteus aculeatus) represents a convenient model to study microevolution-adaptation to a freshwater environment. Although genetic adaptations to freshwater environments are well-studied, epigenetic adaptations have attracted little attention. In this work, we investigated the role of DNA methylation in the adaptation of the marine stickleback population to freshwater conditions. DNA methylation profiling was performed in marine and freshwater populations of sticklebacks, as well as in marine sticklebacks placed into a freshwater environment and freshwater sticklebacks placed into seawater. We showed that the DNA methylation profile after placing a marine stickleback into fresh water partially converged to that of a freshwater stickleback. For six genes including ATP4A ion pump and NELL1, believed to be involved in skeletal ossification, we demonstrated similar changes in DNA methylation in both evolutionary and short-term adaptation. This suggested that an immediate epigenetic response to freshwater conditions can be maintained in freshwater population. Interestingly, we observed enhanced epigenetic plasticity in freshwater sticklebacks that may serve as a compensatory regulatory mechanism for the lack of genetic variation in the freshwater population. For the first time, we demonstrated that genes encoding ion channels KCND3, CACNA1FB, and ATP4A were differentially methylated between the marine and the freshwater populations. Other genes encoding ion channels were previously reported to be under selection in freshwater populations. Nevertheless, the genes that harbor genetic and epigenetic changes were not the same, suggesting that epigenetic adaptation is a complementary mechanism to selection of genetic variants favorable for freshwater environment.


Subject(s)
Adaptation, Physiological/genetics , Epigenesis, Genetic/genetics , Smegmamorpha/genetics , Acclimatization/genetics , Amylopectin , Animals , Biological Evolution , DNA Methylation/genetics , Evolution, Molecular , Fresh Water , Genetic Variation/genetics , Genome-Wide Association Study , Models, Genetic , Seawater , Selection, Genetic/genetics
14.
Mitochondrial DNA B Resour ; 3(1): 40-41, 2017 Dec 21.
Article in English | MEDLINE | ID: mdl-33474057

ABSTRACT

The mitochondrial genomes from two individuals of the extinct subspecies of the Sevan trout Salmo ischchan danilewskii are published in this paper. The mitochondrial DNA (mtDNA) is 16,665 base pairs (bp) in length and contained 13 protein-coding genes, 2 rRNA genes, and 22 tRNA genes. The overall base composition of the genome in descending order was 27.9% of A, 29.4% of C, 16.7% of G, and 26.0% of T without a significant AT bias of 53.9%.

15.
Ecol Evol ; 3(8): 2612-8, 2013 Aug.
Article in English | MEDLINE | ID: mdl-24567827

ABSTRACT

Legally certified sturgeon fisheries require population protection and conservation methods, including DNA tests to identify the source of valuable sturgeon roe. However, the available genetic data are insufficient to distinguish between different sturgeon populations, and are even unable to distinguish between some species. We performed high-throughput single-nucleotide polymorphism (SNP)-genotyping analysis on different populations of Russian (Acipenser gueldenstaedtii), Persian (A. persicus), and Siberian (A. baerii) sturgeon species from the Caspian Sea region (Volga and Ural Rivers), the Azov Sea, and two Siberian rivers. We found that Russian sturgeons from the Volga and Ural Rivers were essentially indistinguishable, but they differed from Russian sturgeons in the Azov Sea, and from Persian and Siberian sturgeons. We identified eight SNPs that were sufficient to distinguish these sturgeon populations with 80% confidence, and allowed the development of markers to distinguish sturgeon species. Finally, on the basis of our SNP data, we propose that the A. baerii-like mitochondrial DNA found in some Russian sturgeons from the Caspian Sea arose via an introgression event during the Pleistocene glaciation. In the present study, the high-throughput genotyping analysis of several sturgeon populations was performed. SNP markers for species identification were defined. The possible explanation of the baerii-like mitotype presence in some Russian sturgeons in the Caspian Sea was suggested.

SELECTION OF CITATIONS
SEARCH DETAIL
...