Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(9)2024 May 02.
Article in English | MEDLINE | ID: mdl-38732194

ABSTRACT

An imbalance between production and excretion of amyloid ß peptide (Aß) in the brain tissues of Alzheimer's disease (AD) patients leads to Aß accumulation and the formation of noxious Aß oligomers/plaques. A promising approach to AD prevention is the reduction of free Aß levels by directed enhancement of Aß binding to its natural depot, human serum albumin (HSA). We previously demonstrated the ability of specific low-molecular-weight ligands (LMWLs) in HSA to improve its affinity for Aß. Here we develop this approach through a bioinformatic search for the clinically approved AD-related LMWLs in HSA, followed by classification of the candidates according to the predicted location of their binding sites on the HSA surface, ranking of the candidates, and selective experimental validation of their impact on HSA affinity for Aß. The top 100 candidate LMWLs were classified into five clusters. The specific representatives of the different clusters exhibit dramatically different behavior, with 3- to 13-fold changes in equilibrium dissociation constants for the HSA-Aß40 interaction: prednisone favors HSA-Aß interaction, mefenamic acid shows the opposite effect, and levothyroxine exhibits bidirectional effects. Overall, the LMWLs in HSA chosen here provide a basis for drug repurposing for AD prevention, and for the search of medications promoting AD progression.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Protein Binding , Serum Albumin, Human , Humans , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/chemistry , Ligands , Serum Albumin, Human/metabolism , Serum Albumin, Human/chemistry , Alzheimer Disease/metabolism , Molecular Weight , Binding Sites , Peptide Fragments/metabolism , Peptide Fragments/chemistry
2.
Cell Calcium ; 119: 102869, 2024 May.
Article in English | MEDLINE | ID: mdl-38484433

ABSTRACT

Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic myelopoietic growth factor and proinflammatory cytokine, clinically used for multiple indications and serving as a promising target for treatment of many disorders, including cancer, multiple sclerosis, rheumatoid arthritis, psoriasis, asthma, COVID-19. We have previously shown that dimeric Ca2+-bound forms of S100A6 and S100P proteins, members of the multifunctional S100 protein family, are specific to GM-CSF. To probe selectivity of these interactions, the affinity of recombinant human GM-CSF to dimeric Ca2+-loaded forms of 18 recombinant human S100 proteins was studied by surface plasmon resonance spectroscopy. Of them, only S100A4 protein specifically binds to GM-CSF with equilibrium dissociation constant, Kd, values of 0.3-2 µM, as confirmed by intrinsic fluorescence and chemical crosslinking data. Calcium removal prevents S100A4 binding to GM-CSF, whereas monomerization of S100A4/A6/P proteins disrupts S100A4/A6 interaction with GM-CSF and induces a slight decrease in S100P affinity for GM-CSF. Structural modelling indicates the presence in the GM-CSF molecule of a conserved S100A4/A6/P-binding site, consisting of the residues from its termini, helices I and III, some of which are involved in the interaction with GM-CSF receptors. The predicted involvement of the 'hinge' region and F89 residue of S100P in GM-CSF recognition was confirmed by mutagenesis. Examination of S100A4/A6/P ability to affect GM-CSF signaling showed that S100A4/A6 inhibit GM-CSF-induced suppression of viability of monocytic THP-1 cells. The ability of the S100 proteins to modulate GM-CSF activity is relevant to progression of various neoplasms and other diseases, according to bioinformatics analysis. The direct regulation of GM-CSF signaling by extracellular forms of the S100 proteins should be taken into account in the clinical use of GM-CSF and development of the therapeutic interventions targeting GM-CSF or its receptors.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor , S100 Proteins , Humans , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , S100 Proteins/metabolism , Recombinant Proteins/metabolism , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/chemistry , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Protein Binding , Binding Sites
3.
Biomolecules ; 13(9)2023 09 04.
Article in English | MEDLINE | ID: mdl-37759746

ABSTRACT

S100 is a family of over 20 structurally homologous, but functionally diverse regulatory (calcium/zinc)-binding proteins of vertebrates. The involvement of S100 proteins in numerous vital (patho)physiological processes is mediated by their interaction with various (intra/extra)cellular protein partners, including cell surface receptors. Furthermore, recent studies have revealed the ability of specific S100 proteins to modulate cell signaling via direct interaction with cytokines. Previously, we revealed the binding of ca. 71% of the four-helical cytokines via the S100P protein, due to the presence in its molecule of a cytokine-binding site overlapping with the binding site for the S100P receptor. Here, we show that another S100 protein, S100A6 (that has a pairwise sequence identity with S100P of 35%), specifically binds numerous four-helical cytokines. We have studied the affinity of the recombinant forms of 35 human four-helical cytokines from all structural families of this fold to Ca2+-loaded recombinant human S100A6, using surface plasmon resonance spectroscopy. S100A6 recognizes 26 of the cytokines from all families of this fold, with equilibrium dissociation constants from 0.3 nM to 12 µM. Overall, S100A6 interacts with ca. 73% of the four-helical cytokines studied to date, with a selectivity equivalent to that for the S100P protein, with the differences limited to the binding of interleukin-2 and oncostatin M. The molecular docking study evidences the presence in the S100A6 molecule of a cytokine-binding site, analogous to that found in S100P. The findings argue the presence in some of the promiscuous members of the S100 family of a site specific to a wide range of four-helical cytokines. This unique feature of the S100 proteins potentially allows them to modulate the activity of the numerous four-helical cytokines in the disorders accompanied by an excessive release of the cytokines.


Subject(s)
Immunologic Factors , S100 Proteins , Humans , Animals , S100 Calcium Binding Protein A6 , Molecular Docking Simulation , Binding Sites , Cell Cycle Proteins
4.
Int J Mol Sci ; 23(24)2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36555597

ABSTRACT

Tumor necrosis factor (TNF) inhibitors (anti-TNFs) represent a cornerstone of the treatment of various immune-mediated inflammatory diseases and are among the most commercially successful therapeutic agents. Knowledge of TNF binding partners is critical for identification of the factors able to affect clinical efficacy of the anti-TNFs. Here, we report that among eighteen representatives of the multifunctional S100 protein family, only S100A11, S100A12 and S100A13 interact with the soluble form of TNF (sTNF) in vitro. The lowest equilibrium dissociation constants (Kd) for the complexes with monomeric sTNF determined using surface plasmon resonance spectroscopy range from 2 nM to 28 nM. The apparent Kd values for the complexes of multimeric sTNF with S100A11/A12 estimated from fluorimetric titrations are 0.1-0.3 µM. S100A12/A13 suppress the cytotoxic activity of sTNF against Huh-7 cells, as evidenced by the MTT assay. Structural modeling indicates that the sTNF-S100 interactions may interfere with the sTNF recognition by the therapeutic anti-TNFs. Bioinformatics analysis reveals dysregulation of TNF and S100A11/A12/A13 in numerous disorders. Overall, we have shown a novel potential regulatory role of the extracellular forms of specific S100 proteins that may affect the efficacy of anti-TNF treatment in various diseases.


Subject(s)
Receptors, Tumor Necrosis Factor , S100 Proteins , Receptors, Tumor Necrosis Factor/metabolism , S100A12 Protein , Tumor Necrosis Factor Inhibitors , Tumor Necrosis Factor-alpha/metabolism
5.
Int J Mol Sci ; 23(19)2022 Oct 09.
Article in English | MEDLINE | ID: mdl-36233301

ABSTRACT

S100 proteins are multifunctional calcium-binding proteins of vertebrates that act intracellularly, extracellularly, or both, and are engaged in the progression of many socially significant diseases. Their extracellular action is typically mediated by the recognition of specific receptor proteins. Recent studies indicate the ability of some S100 proteins to affect cytokine signaling through direct interaction with cytokines. S100P was shown to be the S100 protein most actively involved in interactions with some four-helical cytokines. To assess the selectivity of the S100P protein binding to four-helical cytokines, we have probed the interaction of Ca2+-bound recombinant human S100P with a panel of 32 four-helical human cytokines covering all structural families of this fold, using surface plasmon resonance spectroscopy. A total of 22 cytokines from all families of four-helical cytokines are S100P binders with the equilibrium dissociation constants, Kd, ranging from 1 nM to 3 µM (below the Kd value for the S100P complex with the V domain of its conventional receptor, receptor for advanced glycation end products, RAGE). Molecular docking and mutagenesis studies revealed the presence in the S100P molecule of a cytokine-binding site, which overlaps with the RAGE-binding site. Since S100 binding to four-helical cytokines inhibits their signaling in some cases, the revealed ability of the S100P protein to interact with ca. 71% of the four-helical cytokines indicates that S100P may serve as a poorly selective inhibitor of their action.


Subject(s)
Calcium-Binding Proteins , Calcium , Cytokines , Calcium/metabolism , Calcium, Dietary , Calcium-Binding Proteins/metabolism , Carrier Proteins/metabolism , Cytokines/metabolism , Humans , Immunologic Factors , Molecular Docking Simulation , Neoplasm Proteins/metabolism , Protein Binding , Receptor for Advanced Glycation End Products/metabolism , S100 Proteins/metabolism
6.
Int J Mol Sci ; 23(4)2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35216109

ABSTRACT

Interferon-ß (IFN-ß) is a pleiotropic cytokine secreted in response to various pathological conditions and is clinically used for therapy of multiple sclerosis. Its application for treatment of cancer, infections and pulmonary diseases is limited by incomplete understanding of regulatory mechanisms of its functioning. Recently, we reported that IFN-ß activity is affected by interactions with S100A1, S100A4, S100A6, and S100P proteins, which are members of the S100 protein family of multifunctional Ca2+-binding proteins possessing cytokine-like activities (Int J Mol Sci. 2020;21(24):9473). Here we show that IFN-ß interacts with one more representative of the S100 protein family, the S100B protein, involved in numerous oncological and neurological diseases. The use of chemical crosslinking, intrinsic fluorescence, and surface plasmon resonance spectroscopy revealed IFN-ß binding to Ca2+-loaded dimeric and monomeric forms of the S100B protein. Calcium depletion blocks the S100B-IFN-ß interaction. S100B monomerization increases its affinity to IFN-ß by 2.7 orders of magnitude (equilibrium dissociation constant of the complex reaches 47 pM). Crystal violet assay demonstrated that combined application of IFN-ß and S100B (5-25 nM) eliminates their inhibitory effects on MCF-7 cell viability. Bioinformatics analysis showed that the direct modulation of IFN-ß activity by the S100B protein described here could be relevant to progression of multiple oncological and neurological diseases.


Subject(s)
Interferon-beta/metabolism , S100 Calcium Binding Protein beta Subunit/metabolism , Animals , CHO Cells , Calcium/metabolism , Cell Line, Tumor , Cricetulus , Humans , MCF-7 Cells , Nervous System Diseases/metabolism , Protein Binding/physiology
7.
Biomolecules ; 12(1)2022 01 12.
Article in English | MEDLINE | ID: mdl-35053268

ABSTRACT

Erythropoietin (EPO) is a clinically significant four-helical cytokine, exhibiting erythropoietic, cytoprotective, immunomodulatory, and cancer-promoting activities. Despite vast knowledge on its signaling pathways and physiological effects, extracellular factors regulating EPO activity remain underexplored. Here we show by surface plasmon resonance spectroscopy, that among eighteen members of Ca2+-binding proteins of the S100 protein family studied, only S100A2, S100A6 and S100P proteins specifically recognize EPO with equilibrium dissociation constants ranging from 81 nM to 0.5 µM. The interactions occur exclusively under calcium excess. Bioinformatics analysis showed that the EPO-S100 interactions could be relevant to progression of neoplastic diseases, including cancer, and other diseases. The detailed knowledge of distinct physiological effects of the EPO-S100 interactions could favor development of more efficient clinical implications of EPO. Summing up our data with previous findings, we conclude that S100 proteins are potentially able to directly affect functional activities of specific members of all families of four-helical cytokines, and cytokines of other structural superfamilies.


Subject(s)
Erythropoietin , S100 Proteins , Calcium/metabolism , Erythropoietin/metabolism , Protein Binding , Protein Transport , S100 Proteins/metabolism
8.
Int J Mol Sci ; 21(24)2020 Dec 13.
Article in English | MEDLINE | ID: mdl-33322098

ABSTRACT

Interferon-ß (IFN-ß) is a pleiotropic cytokine used for therapy of multiple sclerosis, which is also effective in suppression of viral and bacterial infections and cancer. Recently, we reported a highly specific interaction between IFN-ß and S100P lowering IFN-ß cytotoxicity to cancer cells (Int J Biol Macromol. 2020; 143: 633-639). S100P is a member of large family of multifunctional Ca2+-binding proteins with cytokine-like activities. To probe selectivity of IFN-ß-S100 interaction with respect to S100 proteins, we used surface plasmon resonance spectroscopy, chemical crosslinking, and crystal violet assay. Among the thirteen S100 proteins studied S100A1, S100A4, and S100A6 proteins exhibit strictly Ca2+-dependent binding to IFN-ß with equilibrium dissociation constants, Kd, of 0.04-1.5 µM for their Ca2+-bound homodimeric forms. Calcium depletion abolishes the S100-IFN-ß interactions. Monomerization of S100A1/A4/A6 decreases Kd values down to 0.11-1.0 nM. Interferon-α is unable of binding to the S100 proteins studied. S100A1/A4 proteins inhibit IFN-ß-induced suppression of MCF-7 cells viability. The revealed direct influence of specific S100 proteins on IFN-ß activity uncovers a novel regulatory role of particular S100 proteins, and opens up novel approaches to enhancement of therapeutic efficacy of IFN-ß.


Subject(s)
Calcium/metabolism , Interferon-beta/metabolism , S100 Proteins/metabolism , Amino Acid Sequence , Calcium/chemistry , Calcium-Binding Proteins/chemistry , Calcium-Binding Proteins/metabolism , Cardiovascular Diseases/metabolism , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism , Cell Survival/drug effects , Dimerization , Humans , Kinetics , MCF-7 Cells , Models, Chemical , Molecular Docking Simulation , Neoplasm Proteins/chemistry , Neoplasm Proteins/metabolism , Neoplasms/metabolism , Nervous System Diseases/metabolism , Protein Binding , Protein Conformation/drug effects , S100 Calcium Binding Protein A6/chemistry , S100 Calcium Binding Protein A6/metabolism , S100 Calcium-Binding Protein A4/chemistry , S100 Calcium-Binding Protein A4/metabolism , S100 Proteins/chemistry , Sequence Alignment , Surface Plasmon Resonance
9.
Int J Biol Macromol ; 143: 633-639, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31821828

ABSTRACT

S100 proteins are EF-hand calcium-binding proteins of vertebrates exerting numerous intra- and extracellular actions and involved into multiple diseases. Some of S100 proteins serve as extracellular damage signals via interaction with receptors. Although several S100 proteins directly bind specific cytokines, this phenomenon remains underexplored. Using chemical crosslinking, intrinsic fluorescence and surface plasmon resonance spectroscopies, we show that S100P protein interacts with interferon beta (IFN-ß) depending on calcium level and oligomeric state of S100P. Dimeric Ca2+-loaded S100P binds IFN-ß with equilibrium dissociation constants, Kd, of 0.05-0.6 µM. S100P monomerization favors this interaction decreasing Kd values down to 0.3-2 nM. Calcium depletion drastically lowers S100P affinity to IFN-ß. Other related EF-hand proteins studied (calmodulin, α-parvalbumin and S100G) do not bind IFN-ß, thereby confirming selectivity of the S100P - IFN-ß interaction. Crystal violet assay reveals that the S100P binding suppresses IFN-ß cytotoxicity to MCF-7 breast cancer cells. Since several cancers (breast, colon, lung, liver, etc.) exhibit dysregulated functioning of S100P and IFN-ß, their interaction could be relevant to the cancer progression and directed therapeutic interventions.


Subject(s)
Calcium-Binding Proteins/metabolism , Interferon-beta/metabolism , Neoplasm Proteins/metabolism , Calcium/metabolism , Calcium-Binding Proteins/chemistry , Cell Death , Cell Survival , Humans , Interferon-beta/chemistry , Kinetics , Ligands , MCF-7 Cells , Models, Biological , Neoplasm Proteins/chemistry , Protein Binding , Protein Conformation
10.
Cell Calcium ; 80: 152-159, 2019 06.
Article in English | MEDLINE | ID: mdl-31103949

ABSTRACT

S100 proteins constitute a large subfamily of the EF-hand superfamily of calcium binding proteins. They possess one classical EF-hand Ca2+-binding domain and an atypical EF-hand domain. Most of the S100 proteins form stable symmetric homodimers. An analysis of literature data on S100 proteins showed that their physiological concentrations could be much lower than dissociation constants of their dimeric forms. It means that just monomeric forms of these proteins are important for their functioning. In the present work, thermal denaturation of apo-S100P protein monitored by intrinsic tyrosine fluorescence has been studied at various protein concentrations within the region from 0.04-10 µM. A transition from the dimeric to monomeric form results in a decrease in protein thermal stability shifting the mid-transition temperature from 85 to 75 °C. Monomeric S100P immobilized on the surface of a sensor chip of a surface plasmon resonance instrument forms calcium dependent 1 to 1 complexes with human interleukin-11 (equilibrium dissociation constant 1.2 nM). In contrast, immobilized interleukin-11 binds two molecules of dimeric S100P with dissociation constants of 32 nM and 288 nM. Since effective dissociation constant of dimeric S100P protein is very low (0.5 µM as evaluated from our data) the sensitivity of the existing physical methods does not allow carrying out a detailed study of S100P monomer properties. For this reason, we have used molecular dynamics methods to evaluate structural changes in S100P upon its transition from the dimeric to monomeric state. 80-ns molecular dynamics simulations of kinetics of formation of S100P, S100B and S100A11 monomers from the corresponding dimers have been carried out. It was found that during the transition from the homo-dimer to monomer form, the three S100 monomer structures undergo the following changes: (1) the helices in the four-helix bundles within each monomer rotate in order to shield the exposed non-polar residues; (2) almost all lost contacts at the dimer interface are substituted with equivalent and newly formed interactions inside each monomer, and new stabilizing interactions are formed; and (3) all monomers recreate functional hydrophobic cores. The results of the present study show that both dimeric and monomeric forms of S100 proteins can be functional.


Subject(s)
Calcium-Binding Proteins/chemistry , Calcium/metabolism , Interleukin-11/chemistry , Neoplasm Proteins/chemistry , Calcium/chemistry , Calcium-Binding Proteins/metabolism , Dimerization , Humans , Interleukin-11/metabolism , Molecular Dynamics Simulation , Neoplasm Proteins/metabolism , Protein Binding , Protein Conformation , Protein Denaturation , Protein Stability , Structure-Activity Relationship , Surface Plasmon Resonance
11.
J Biomol Struct Dyn ; 35(1): 78-91, 2017 Jan.
Article in English | MEDLINE | ID: mdl-26726132

ABSTRACT

Interleukin-11 (IL-11) is a hematopoietic cytokine engaged in numerous biological processes and validated as a target for treatment of various cancers. IL-11 contains intrinsically disordered regions that might recognize multiple targets. Recently we found that aside from IL-11RA and gp130 receptors, IL-11 interacts with calcium sensor protein S100P. Strict calcium dependence of this interaction suggests a possibility of IL-11 interaction with other calcium sensor proteins. Here we probed specificity of IL-11 to calcium-binding proteins of various types: calcium sensors of the EF-hand family (calmodulin, S100B and neuronal calcium sensors: recoverin, NCS-1, GCAP-1, GCAP-2), calcium buffers of the EF-hand family (S100G, oncomodulin), and a non-EF-hand calcium buffer (α-lactalbumin). A specific subset of the calcium sensor proteins (calmodulin, S100B, NCS-1, GCAP-1/2) exhibits metal-dependent binding of IL-11 with dissociation constants of 1-19 µM. These proteins share several amino acid residues belonging to conservative structural motifs of the EF-hand proteins, 'black' and 'gray' clusters. Replacements of the respective S100P residues by alanine drastically decrease its affinity to IL-11, suggesting their involvement into the association process. Secondary structure and accessibility of the hinge region of the EF-hand proteins studied are predicted to control specificity and selectivity of their binding to IL-11. The IL-11 interaction with the EF-hand proteins is expected to occur under numerous pathological conditions, accompanied by disintegration of plasma membrane and efflux of cellular components into the extracellular milieu.


Subject(s)
Carrier Proteins/chemistry , Conserved Sequence , EF Hand Motifs , Interleukin-11/chemistry , Models, Molecular , Protein Interaction Domains and Motifs , Animals , Calcium-Binding Proteins/chemistry , Calcium-Binding Proteins/metabolism , Humans , Interleukin-11/metabolism , Metals/chemistry , Neoplasm Proteins/chemistry , Neoplasm Proteins/metabolism , Protein Binding , Protein Domains
12.
Biochem Biophys Res Commun ; 468(4): 733-8, 2015 Dec 25.
Article in English | MEDLINE | ID: mdl-26551460

ABSTRACT

Interleukin-11 (IL-11) and S100P are oncoproteins co-expressed in numerous cancers, which might favor their interaction during oncogenesis. We have explored the possibility of this interaction by surface plasmon resonance spectroscopy, intrinsic fluorescence, and chemical crosslinking. Recombinant forms of IL-11 and S100P interact with each other under physiological level of calcium ions. IL-11 molecule has at least two S100P-binding sites with dissociation constants of 32 nM and 288 nM, which is 5-13-fold lower than its affinity to extracellular domain of IL-11 receptor subunit α. S100P does not alter IL-11-induced STAT3 activation in HEK293 cells co-expressing IL-11 receptors, but could affect other tumorigenic signaling pathways. The highly specific IL-11 - S100P interaction occurring under physiologically relevant conditions should be taken into consideration upon development of the antineoplastics inhibiting IL-11 signaling.


Subject(s)
Calcium/chemistry , Calcium/metabolism , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Interleukin-11/chemistry , Interleukin-11/metabolism , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Binding Sites , HEK293 Cells , Humans , Kinetics , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...