Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
Transl Androl Urol ; 8(6): 703-711, 2019 Dec.
Article in English | MEDLINE | ID: mdl-32038967

ABSTRACT

BACKGROUND: The deleterious effects of chronic ischemia on bladder function have been extensively studied; however, evaluation and characterization of the effects of acute ischemia and hypoxia are lacking. The present study examined pig and human detrusor smooth muscle (DSM) strips, in combination with an isolated perfused working pig bladder model to evaluate the relationship between transient ischemia and bladder function. METHODS: Organ bath and myographic studies were performed using pig and human DSM strips exposed to starvation/hypoxia conditions. Analogous conditions were then recreated in the ex vivo bladder preparation. Filled bladders were then treated with intravascular carbachol to induce contraction and subsequent void. An intravesical transducer continuously monitored changes in bladder pressure, while a tissue pO2 monitor analyzed changes in oxygenation. RESULTS: After 120 min in starved/hypoxic conditions, both pig and human DSM strips demonstrated significantly increased resting tone, with a greater than two-fold increase in force over control. This was effectively blocked with atropine. DSM strips also demonstrated significantly weaker contractions; however, contractile force was nearly recovered following 15-min exposure to replete/oxygenated buffer. In the ex vivo bladder preparation, filling under ischemic conditions yielded a 225% increase in end-fill vesical pressures (Pves) compared to controls. End-fill Pves returned to baseline with reperfusion during a subsequent filling cycle. CONCLUSIONS: Transient ischemia/hypoxia leads to an acute increase in tone in both DSM strips and ex vivo pig bladder. Remarkably, the effect is reversible with re-perfusion and may be blocked with anticholinergics, suggesting a relationship between acute ischemia and increased local acetylcholine release.

2.
Neurourol Urodyn ; 37(8): 2425-2433, 2018 11.
Article in English | MEDLINE | ID: mdl-29777585

ABSTRACT

AIMS: Chronic ischemia is a recognized factor in the pathophysiology of underactive bladder (UAB). Although relative ischemia (ie, low blood flow) is known to occur during filling, little is known regarding the pathophysiology that leads to UAB. Therefore, we developed an ex vivo functional porcine model to investigate the role of transient ischemia and whether autoregulation, a mechanism that maintains tissue oxygenation in certain vital organs, also exists in the bladder. METHODS: Using bladders from slaughtered pigs, we prepared an isolated perfused model where we studied the effects of bladder perfusion flow rate on perfusion pressure and tissue oxygenation during the filling phase. Bladders were perfused at an initial flow rate of 20 mL/min and then clamped in a sequentially decreasing stepwise manner down to no flow and back to the initial flow rate. RESULTS: We found a linear relationship between flow rate and perfusion pressure until the flow rate decreased below 5 mL/min at which point the vascular resistance decreased; however, tissue pO2 remained stable after an initial decline. CONCLUSIONS: These findings suggest that there may be an intrinsic autoregulatory mechanism in the bladder that allows it to undergo cyclic episodes of relative ischemia during its normal function. Factors that overcome this mechanism such as complete or chronic ischemia may be critical in the progression to detrusor underactivity and thereby highlight the importance of intervention during the early phases of this disease process.


Subject(s)
Blood Vessels/physiology , Urinary Bladder/blood supply , Urinary Bladder/physiology , Animals , Blood Pressure/physiology , Disease Models, Animal , Female , Homeostasis , In Vitro Techniques , Ischemia/physiopathology , Models, Biological , Oxygen Consumption/physiology , Perfusion , Pressure , Swine , Urinary Bladder, Underactive/physiopathology , Vascular Resistance/physiology
3.
Life Sci ; 201: 63-71, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29572181

ABSTRACT

AIMS: The present study aims to investigate the role of Akt in the regulation of urinary bladder organ hypertrophy caused by partial bladder outlet obstruction (pBOO). MAIN METHODS: Male rats were surgically induced for pBOO. Real-time PCR and western blot were used to examine the levels of mRNA and protein. A phosphoinositide 3-kinase (PI3K) inhibitor LY294002 was used to inhibit the activity of endogenous Akt. KEY FINDINGS: The urinary bladder developed hypertrophy at 2 weeks of pBOO. The protein but not mRNA levels of type I collagen and α-smooth muscle actin (αSMA) were increased in pBOO bladder when compared to sham control. The phosphorylation (activation) levels of Akt1 (p-Ser473), mammalian target of rapamycin (mTOR), p70S6 kinase (p70S6K), and 4E-BP1 were also increased in pBOO bladder. LY294002 treatment reduced the phosphorylation levels of Akt1 and 4E-BP1, and the protein levels of type I collagen and αSMA in pBOO bladder. The mRNA and protein levels of proliferating cell nuclear antigen (PCNA) were increased in pBOO bladder, and PCNA up-regulation occurred in urothelial not muscular layer. LY294002 treatment had no effect on the mRNA and protein levels of PCNA in pBOO bladder. LY294002 treatment partially reduced the bladder weight caused by pBOO. SIGNIFICANCE: pBOO-induced urinary bladder hypertrophy is attributable to fibrosis, smooth muscle cellular hypertrophy, and urothelium cell hyper-proliferation. Akt1-mediated protein synthesis in pBOO bladder contributes to type I collagen and αSMA but not PCNA up-regulation. Target of Akt1 is necessary but not sufficient in treatment of urinary bladder hypertrophy following pBOO.


Subject(s)
Proto-Oncogene Proteins c-akt/biosynthesis , Proto-Oncogene Proteins c-akt/genetics , Urinary Bladder/pathology , Animals , Biosynthetic Pathways/genetics , Chromones/pharmacology , Enzyme Inhibitors , Fibrosis , Hypertrophy , Male , Morpholines/pharmacology , Organ Size/drug effects , Phosphoinositide-3 Kinase Inhibitors , RNA, Messenger/biosynthesis , Rats , Rats, Sprague-Dawley , Urinary Bladder Neck Obstruction/pathology , Urothelium/pathology
5.
Neurourol Urodyn ; 37(2): 642-649, 2018 02.
Article in English | MEDLINE | ID: mdl-28745836

ABSTRACT

AIMS: Although there is evidence that deficits in bladder blood flow negatively impact bladder function, the effects of vesical, and perfusion pressures on bladder perfusion (perfusate flow), and of perfusate flow on vesical pressure, remain poorly understood. The present study used the isolated perfused working pig bladder model to examine the relationships between blood flow, and vesical and perfusion pressures. METHODS: Vesical arteries of pig bladders obtained from a local slaughterhouse were cannulated and perfused with Krebs-Henseleit solution at different pressures, and with carbachol to cause bladder contraction. The urethra of each bladder was cannulated to permit filling (10 mL/min), isovolumetric contraction and emptying. A ureter was cannulated with a pressure sensor to monitor vesical pressure. RESULTS: When at rest (50 mL vesical volume), bladder vesical pressure was 8.06 ± 1.5 mmHg and perfusate flow driven by a pressure gradient of 105 mmHg was 22.5 ± 2 mL/min (58.9 ± 7.8 mL/min-100 g). During filling, vesical pressure increased and flow decreased, but not necessarily in-parallel. Perfusate flow decreased transiently during isovolumetric contraction, and flow increased during emptying. A reduction in perfusion pressure from ∼105 to ∼40 mmHg reduced flow from ∼70 to ∼20 mL/min-100g, and reduced flow correlated with reduced vesical pressure. CONCLUSION: Perfusate flow is dependent on bladder perfusion pressure, and not necessarily reciprocally dependent on vesical pressure. Vesical pressure is highly sensitive to the level of perfusate flow, which supports the hypothesis that vesical pressure is dependent on the level of detrusor smooth muscle contractile activity (tone), and that compliance is dependent on bladder perfusion.


Subject(s)
Muscle Contraction/physiology , Muscle, Smooth/physiology , Urethra/physiology , Urinary Bladder/physiology , Animals , Carbachol/pharmacology , Male , Muscle Contraction/drug effects , Muscle, Smooth/drug effects , Pressure , Swine , Urethra/drug effects , Urinary Bladder/drug effects
6.
Front Pharmacol ; 8: 756, 2017.
Article in English | MEDLINE | ID: mdl-29093683

ABSTRACT

Although recent studies reveal that activation of the metabolic and Ca2+ sensor AMPK strongly inhibits smooth muscle contraction, there is a paucity of information about the potential linkage between pharmacological AMPK activation and vascular smooth muscle (VSM) contraction regulation. Our aim was to test the general hypothesis that the allosteric AMPK activator A-769662 causes VSM relaxation via inhibition of contractile protein activation, and to specifically determine which activation mechanism(s) is(are) affected. The ability of A-769662 to cause endothelium-independent relaxation of contractions induced by several contractile stimuli was examined in large and small musculocutaneous and visceral rabbit arteries. For comparison, the structurally dissimilar AMPK activators MET, SIM, and BBR were assessed. A-769662 displayed artery- and agonist-dependent differential inhibitory activities that depended on artery size and location. A-769662 did not increase AMPK-pT172 levels, but did increase phosphorylation of the downstream AMPK substrate, acetyl-CoA carboxylase (ACC). A-769662 did not inhibit basal phosphorylation levels of several contractile protein regulatory proteins, and did not alter the activation state of rhoA. A-769662 did not inhibit Ca2+- and GTPγS-induced contractions in ß-escin-permeabilized muscle, suggesting that A-769662 must act by inhibiting Ca2+ signaling. In intact artery, A-769662 immediately reduced basal intracellular free calcium ([Ca2+]i), inhibited a stimulus-induced increase in [Ca2+]i, and inhibited a cyclopiazonic acid (CPA)-induced contraction. MET increased AMPK-pT172, and caused neither inhibition of contraction nor inhibition of [Ca2+]i. Together, these data support the hypothesis that the differential inhibition of stimulus-induced arterial contractions by A-769662 was due to selective inhibition of a Ca2+ mobilization pathway, possibly involving CPA-dependent Ca2+ entry via an AMPK-independent pathway. That MET activated AMPK without causing arterial relaxation suggests that AMPK activation does not necessarily cause VSM relaxation.

7.
Front Physiol ; 8: 692, 2017.
Article in English | MEDLINE | ID: mdl-28955248

ABSTRACT

Background: Many strategies have been utilized to treat traumatic shock via improved oxygen delivery (DO2), while fewer have been used to in an attempt to reduce oxygen demand (VO2). The cellular energy sensor 5' adenosine monophosphate-activated protein kinase (AMPK) has the potential to modulate both whole-body DO2 and VO2. Therefore, we determined the effect of the AMPK activator AICAR (5-aminoimidazole-4-carboxamide 1-ß-D-ribonucleoside) given acutely or chronically on key metabolites, hemodynamics, and oxygen consumption/delivery before and during hemorrhage in anesthetized male rabbits. Methods: Chronically treated animals received AICAR (40 mg/kg/day, IV) for 10 days prior to hemorrhage, while rabbits in the acute study were infused with AICAR (7.5 mg/kg bolus, 2 mg/kg/min infusion) or vehicle (0.3 ml/kg saline bolus, 0.03 ml/kg/min infusion) IV for 2 h prior to severe hemorrhage. Both acutely and chronically treated animals were sedated (ketamine/xylazine cocktail) the morning of the terminal experiment and surgically prepared for hemorrhage, including the implantation of arterial and venous catheters (for blood removal/sampling and drug/vehicle administration) and thoracotomy for implantation of transit-time flow transducers (for cardiac output determination). Results: AICAR given acutely lowered arterial blood glucose and increased blood lactate levels before hemorrhage, and abolished the well-documented hemorrhage-induced hyperglycemia seen in vehicle treated animals. Animals given AICAR chronically had blunted hemorrhage-induced hyperglycemia without prior baseline changes. Chronically treated AICAR animals showed significantly lower lactate levels during hemorrhage. Rabbits receiving AICAR both acutely and chronically experienced similar falls in mean arterial pressure, cardiac output and hence DO2 to their vehicle counterparts throughout the hemorrhage period. However, rabbits treated either acutely or chronically with AICAR accumulated lower oxygen deficits and debt during hemorrhage compared to vehicle-infused controls. Conclusions: The oxygen debt data suggest that AMPK activation could decrease trauma associated morbidity and mortality, perhaps by mechanisms related to increased glucose utilization. Additional studies are needed to investigate the effects of AICAR and associated mechanisms of action when given during resuscitation from hemorrhage.

8.
Front Physiol ; 8: 681, 2017.
Article in English | MEDLINE | ID: mdl-28943852

ABSTRACT

Metabolic stress diminishes smooth muscle contractile strength by a poorly defined mechanism. To test the hypothesis that metabolic stress activates a compensatory cell signaling program to reversibly downregulate contraction, arterial rings and bladder muscle strips in vitro were deprived of O2 and glucose for 30 and 60 min ("starvation") to induce metabolic stress, and the phosphorylation status of proteins involved in regulation of contraction and metabolic stress were assessed in tissues under basal and stimulated conditions. A 15-30 min recovery period (O2 and glucose repletion) tested whether changes induced by starvation were reversible. Starvation decreased basal phosphorylation of myosin regulatory light chain (MLC-pS19) and of the rho kinase (ROCK) downstream substrates cofilin (cofilin-pS3) and myosin phosphatase targeting subunit MYPT1 (MYPT1-pT696 and MYPT1-pT853), and abolished the ability of contractile stimuli to cause a strong, sustained contraction. Starvation increased basal phosphorylation of AMPK (AMPK-pT172) and 3 downstream AMPK substrates, acetyl-CoA carboxylase (ACC-pS79), rhoA (rhoA-pS188), and phospholamban (PLB-pS16). Increases in rhoA-pS188 and PLB-pS16 would be expected to inhibit contraction. Recovery restored basal AMPK-pT172 and MLC-pS19 to control levels, and restored contraction. In AMPKα2 deficient mice (AMPK[Formula: see text]), the basal level of AMPK-pT172 was reduced by 50%, and MLC-pS19 was elevated by 50%, but AMPK[Formula: see text] did not prevent starvation-induced contraction inhibition nor enhance recovery from starvation. These results indicate that constitutive AMPK activity participates in constitutive regulation of contractile proteins, and suggest that AMPK activation is necessary, but may not be sufficient, to cause smooth muscle contraction inhibition during metabolic stress.

9.
J Mech Behav Biomed Mater ; 71: 192-200, 2017 07.
Article in English | MEDLINE | ID: mdl-28343086

ABSTRACT

Tension-sensitive nerves in the bladder wall are responsible for providing bladder sensation. Bladder wall tension, and therefore nerve output, is a function of bladder pressure, volume, geometry and material properties. The elastic modulus of the bladder is acutely adjustable, and this material property is responsible for adjustable preload tension exhibited in human and rabbit detrusor muscle strips and dynamic elasticity revealed during comparative-fill urodynamics in humans. A finite deformation model of the bladder was previously used to predict filling pressure and wall tension using uniaxial tension test data and the results showed that wall tension can increase significantly during filling with relatively little pressure change. In the present study, published uniaxial rabbit detrusor data were used to quantify regulated changes in the elastic modulus, and the finite deformation model was expanded to illustrate the potential effects of elasticity changes on pressure and wall tension during filling. The model demonstrates a shift between relatively flat pressure-volume filling curves, which is consistent with a recent human urodynamics study, and also predicts that dynamic elasticity would produce significant changes in wall tension during filling. The model results support the conclusion that acute regulation of bladder elasticity could contribute to significant changes in wall tension for a given volume that could lead to urgency, and that a single urodynamic fill may be insufficient to characterize bladder biomechanics. The model illustrates the potential value of quantifying wall tension in addition to pressure during urodynamics.


Subject(s)
Muscle Contraction , Muscle, Smooth/physiology , Urinary Bladder/physiology , Urodynamics , Animals , Elasticity , Humans , Rabbits
10.
Am J Physiol Renal Physiol ; 313(1): F126-F134, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28356291

ABSTRACT

Biological soft tissues are viscoelastic because they display time-independent pseudoelasticity and time-dependent viscosity. However, there is evidence that the bladder may also display plasticity, defined as an increase in strain that is unrecoverable unless work is done by the muscle. In the present study, an electronic lever was used to induce controlled changes in stress and strain to determine whether rabbit detrusor smooth muscle (rDSM) is best described as viscoelastic or viscoelastic plastic. Using sequential ramp loading and unloading cycles, stress-strain and stiffness-stress analyses revealed that rDSM displayed reversible viscoelasticity, and that the viscous component was responsible for establishing a high stiffness at low stresses that increased only modestly with increasing stress compared with the large increase produced when the viscosity was absent and only pseudoelasticity governed tissue behavior. The study also revealed that rDSM underwent softening correlating with plastic deformation and creep that was reversed slowly when tissues were incubated in a Ca2+-containing solution. Together, the data support a model of DSM as a viscoelastic-plastic material, with the plasticity resulting from motor protein activation. This model explains the mechanism of intrinsic bladder compliance as "slipping" cross bridges, predicts that wall tension is dependent not only on vesicle pressure and radius but also on actomyosin cross-bridge activity, and identifies a novel molecular target for compliance regulation, both physiologically and therapeutically.


Subject(s)
Actomyosin/metabolism , Muscle Contraction , Muscle, Smooth/enzymology , Urinary Bladder/enzymology , rho-Associated Kinases/metabolism , Animals , Biomechanical Phenomena , Compliance , Male , Models, Biological , Rabbits , Signal Transduction , Stress, Mechanical , Time Factors , Viscosity
11.
World J Urol ; 35(8): 1255-1260, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28025660

ABSTRACT

PURPOSE: Low amplitude rhythmic contractions (LARC) occur in detrusor smooth muscle and may play a role in storage disorders such as overactive bladder and detrusor overactivity. The purpose of this study was to determine whether LARC frequencies identified in vitro from strips of human urinary bladder tissue correlate with in vivo LARC frequencies, visualized as phasic intravesical pressure (p ves) waves during urodynamics (UD). METHODS: After IRB approval, fresh strips of human urinary bladder were obtained from patients. LARC was recorded with tissue strips at low tension (<2 g) and analyzed by fast Fourier transform (FFT) to identify LARC signal frequencies. Blinded UD tracings were retrospectively reviewed for signs of LARC on the p ves tracing during filling and were analyzed via FFT. RESULTS: Distinct LARC frequencies were identified in 100% of tissue strips (n = 9) obtained with a mean frequency of 1.97 ± 0.47 cycles/min (33 ± 8 mHz). Out of 100 consecutive UD studies reviewed, 35 visually displayed phasic p ves waves. In 12/35 (34%), real p ves signals were present that were independent of abdominal activity. Average UD LARC frequency was 2.34 ± 0.36 cycles/min (39 ± 6 mHz) which was similar to tissue LARC frequencies (p = 0.50). A majority (83%) of the UD cohort with LARC signals also demonstrated detrusor overactivity. CONCLUSIONS: During UD, a subset of patients displayed phasic p ves waves with a distinct rhythmic frequency similar to the in vitro LARC frequency quantified in human urinary bladder tissue strips. Further refinements of this technique may help identify subsets of individuals with LARC-mediated storage disorders.


Subject(s)
Muscle Contraction/physiology , Muscle, Smooth/physiology , Urinary Bladder/physiology , Adult , Aged , Female , Fourier Analysis , Humans , In Vitro Techniques , Male , Middle Aged , Muscle, Smooth/physiopathology , Pressure , Urinary Bladder/physiopathology , Urinary Bladder, Overactive/physiopathology , Urodynamics
12.
Neurourol Urodyn ; 36(5): 1417-1426, 2017 Jun.
Article in English | MEDLINE | ID: mdl-27654469

ABSTRACT

AIMS: The purpose of this investigation was to develop a non-invasive, objective, and unprompted method to characterize real-time bladder sensation. METHODS: Volunteers with and without overactive bladder (OAB) were prospectively enrolled in a preliminary accelerated hydration study. Participants drank 2L Gatorade-G2® and recorded real-time sensation (0-100% scale) and standardized verbal sensory thresholds using a novel, touch-screen "sensation meter." 3D bladder ultrasound images were recorded throughout fillings for a subset of participants. Sensation data were recorded for two consecutive complete fill-void cycles. RESULTS: Data from 14 normal and 12 OAB participants were obtained (ICIq-OAB-5a = 0 vs. ≥3). Filling duration decreased in fill2 compared to fill1, but volume did not significantly change. In normals, adjacent verbal sensory thresholds (within fill) showed no overlap, and identical thresholds (between fill) were similar, demonstrating effective differentiation between degrees of %bladder capacity. In OAB, within-fill overlaps and between-fill differences were identified. Real-time %capacity-sensation curves left shifted from fill1 to fill2 in normals, consistent with expected viscoelastic behavior, but unexpectedly right shifted in OAB. 3D ultrasound volume data showed that fill rates started slowly and ramped up with variable end points. CONCLUSIONS: This study establishes a non-invasive means to evaluate real-time bladder sensation using a two-fill accelerated hydration protocol and a sensation meter. Verbal thresholds were inconsistent in OAB, and the right shift in OAB %capacity-sensation curve suggests potential biomechanical and/or sensitization changes. This methodology could be used to gain valuable information on different forms of OAB in a completely non-invasive way.


Subject(s)
Sensation/physiology , Urinary Bladder/physiology , Urination/physiology , Urodynamics/physiology , Adult , Female , Humans , Male , Middle Aged , Ultrasonography , Urinary Bladder/diagnostic imaging , Young Adult
13.
Neurourol Urodyn ; 36(4): 1086-1090, 2017 04.
Article in English | MEDLINE | ID: mdl-27241067

ABSTRACT

AIMS: Previous studies using isolated strips of human detrusor muscle identified adjustable preload tension, a novel mechanism that acutely regulates detrusor wall tension. The purpose of this investigation was to develop a method to identify a correlate measure of adjustable preload tension during urodynamics. METHODS: Patients reporting urgency most or all of the time based on ICIq-OAB survey scores were prospectively enrolled in an extended repeat fill-and-empty urodynamics study designed to identify a correlate of adjustable preload tension which we now call "dynamic elasticity." Cystometric capacity was determined during initial fill. Repeat fills to defined percentages of capacity with passive emptying (via syringe aspiration) were performed to strain soften the bladder. A complete fill with active voiding was included to determine whether human bladder exhibits reversible strain softening. RESULTS: Five patients completed the extended urodynamics study. Intravesical pressure (pves ) decreased with subsequent fills and was significantly lower during Fill 3 compared to Fill 1 (P = 0.008), demonstrating strain softening. Active voiding after Fill 3 caused strain softening reversal, with pves in Fill 4 returning to the baseline measured during Fill 1 (P = 0.29). Dynamic elasticity, the urodynamic correlate of adjustable preload tension, was calculated as the amount of strain softening (or its reversal) per %capacity (Δaverage pves between fills/Δ%capacity). Dynamic elasticity was lost via repeat passive filling and emptying (strain softening) and regained after active voiding regulated the process (strain softening reversal). CONCLUSIONS: Improved understanding of dynamic elasticity in the human bladder could lead to both improved sub-typing and novel treatments of overactive bladder. Neurourol. Urodynam. 36:1086-1090, 2017. © 2016 Wiley Periodicals, Inc.


Subject(s)
Elasticity , Lower Urinary Tract Symptoms/physiopathology , Urinary Bladder, Overactive/physiopathology , Urinary Bladder/physiopathology , Urodynamics , Adult , Biomechanical Phenomena , Female , Humans , Middle Aged , Muscle, Smooth/physiopathology , Organ Size/physiology , Pilot Projects , Pressure , Stress, Mechanical
14.
Neurourol Urodyn ; 35(7): 792-7, 2016 09.
Article in English | MEDLINE | ID: mdl-26227060

ABSTRACT

AIMS: The biomechanical properties of length adaptation and adjustable preload have been previously identified in detrusor smooth muscle in animal models. This in vitro study aims to show that human detrusor smooth muscle exhibits length adaptation and adjustable preload tension which could play an important role in both overactive bladder and detrusor underactivity. METHODS: In order to demonstrate length adaptation, human detrusor smooth muscle strips are stretched and contracted beyond an optimum length and then contracted three times at the previous optimum length to determine if maximum active tension could be re-established. To demonstrate adjustable preload (Tap ), human detrusor smooth muscle strips are subjected to a pre-defined loading-unloading (strain softening) sequence to reduce preload. Then, tissues are contracted and the sequence is repeated to determine if this active process restored preload. RESULTS: Nine patients (average age, 62) provide tissue: 89% are men with urothelial carcinoma and a minority (22%) also have neurogenic bladder dysfunction. In the length adaptation protocol, contractions show progressive increases in active tension (P < 0.05). In the Tap protocol, a significant amount of preload is lost to strain softening (P < 0.05) and is restored after active contraction (P = 0.50). Exposure to the rho-kinase inhibitor, H-1152, prevents the restoration of preload (P < 0.05). CONCLUSIONS: This study demonstrates that human detrusor smooth muscle displays both length adaptation and Tap . Furthermore, Tap may be regulatable through a rho-kinase pathway. These biomechanical processes may be important in the pathophysiology of both overactive bladder and detrusor underactivity. Neurourol. Urodynam. 35:792-797, 2016. © 2015 Wiley Periodicals, Inc.


Subject(s)
Adaptation, Physiological/physiology , Muscle Contraction/physiology , Muscle, Smooth/physiology , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacology , Enzyme Inhibitors/pharmacology , Female , Humans , Male , Middle Aged , Muscle Contraction/drug effects , Muscle, Smooth/drug effects , Signal Transduction/drug effects , rho-Associated Kinases/antagonists & inhibitors
15.
Compr Physiol ; 6(1): 111-68, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26756629

ABSTRACT

Vascular smooth muscle (VSM; see Table 1 for a list of abbreviations) is a heterogeneous biomaterial comprised of cells and extracellular matrix. By surrounding tubes of endothelial cells, VSM forms a regulated network, the vasculature, through which oxygenated blood supplies specialized organs, permitting the development of large multicellular organisms. VSM cells, the engine of the vasculature, house a set of regulated nanomotors that permit rapid stress-development, sustained stress-maintenance and vessel constriction. Viscoelastic materials within, surrounding and attached to VSM cells, comprised largely of polymeric proteins with complex mechanical characteristics, assist the engine with countering loads imposed by the heart pump, and with control of relengthening after constriction. The complexity of this smart material can be reduced by classical mechanical studies combined with circuit modeling using spring and dashpot elements. Evaluation of the mechanical characteristics of VSM requires a more complete understanding of the mechanics and regulation of its biochemical parts, and ultimately, an understanding of how these parts work together to form the machinery of the vascular tree. Current molecular studies provide detailed mechanical data about single polymeric molecules, revealing viscoelasticity and plasticity at the protein domain level, the unique biological slip-catch bond, and a regulated two-step actomyosin power stroke. At the tissue level, new insight into acutely dynamic stress-strain behavior reveals smooth muscle to exhibit adaptive plasticity. At its core, physiology aims to describe the complex interactions of molecular systems, clarifying structure-function relationships and regulation of biological machines. The intent of this review is to provide a comprehensive presentation of one biomachine, VSM.


Subject(s)
Muscle Contraction , Muscle, Smooth, Vascular/physiology , Stress, Mechanical , Animals , Biomechanical Phenomena , Elasticity , Humans
16.
Cardiovasc Res ; 102(1): 68-78, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24445604

ABSTRACT

AIM: Autophagic flux is an important process during autophagy maturation in smooth muscle cells. However, the molecular mechanisms underlying autophagic flux in these cells are largely unknown. Here, we revealed a previously undefined role of CD38, an enzyme that metabolizes NADP(+) into NAADP, in the regulation of autophagic flux in coronary arterial myocytes (CAMs). METHODS AND RESULTS: In vivo CD38 gene knockout mice (CD38(-/-)) fed the high-fat Western diet showed increased accumulation of autophagosomes in coronary arterial media compared with that in wild-type (CD38(+/+)) mice, suggesting that CD38 gene deletion results in a defective autophagic process in CAMs of coronary arteries. In primary cultured CAMs, CD38 gene deletion markedly enhanced 7-ketocholesterol (7-Ket, an atherogenic stimulus and autophagy inducer)-induced accumulation of autophagosomes and increased expression of an autophagic marker, LC3B. However, no difference in autophagosome formation was observed between CD38(+/+) and CD38(-/-) CAMs when autophagic flux was blocked, which indicates that CD38 regulates autophagic flux rather than induction of autophagosome formation. Further, 7-Ket-induced formation of autophagolysosomes was markedly attenuated in CD38(-/-) CAMs compared with CD38(+/+) CAMs. Mechanistically, CD38 gene deletion markedly inhibited 7-Ket-induced dynein activation and autophagosome trafficking, which were associated with attenuated lysosomal Ca(2+) release. Importantly, coronary arterial smooth muscle from CD38(-/-) mice fed the Western diet exhibited phenotypic changes towards a more dedifferentiated state with abnormal extracellular matrix metabolism. CONCLUSION: Taken together, these results suggest that CD38 plays a critical role in autophagosome trafficking and fusion with lysosomes, thus controlling autophagic flux in CAMs under atherogenic stimulation.


Subject(s)
ADP-ribosyl Cyclase 1/genetics , Autophagy , Coronary Vessels/metabolism , Membrane Glycoproteins/genetics , Muscle Cells/cytology , Phagosomes/metabolism , Animals , Autophagy/physiology , Cell Movement/physiology , Lysosomes/metabolism , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Smooth Muscle/metabolism , Protein Transport/physiology
17.
World J Urol ; 32(1): 85-90, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23633125

ABSTRACT

INTRODUCTION: There is growing acceptance that the detrusor muscle is not silent during the filling phase of the micturition cycle but displays low-amplitude phasic contractions that have been associated with urinary urgency. Unfortunately, there is currently no standardized methodology to quantify detrusor rhythm during the filling phase. Therefore, the purpose of this study was to develop an automated computer algorithm to analyze rat detrusor rhythm in a quick, accurate, and reproducible manner. MATERIALS AND METHODS: Strips of detrusor smooth muscle from rats (n = 17) were placed on force transducers and subjected to escalating doses of PGE2 to generate contractile rhythm tracings. An automated computer algorithm was developed to analyze contractile frequency, amplitude, and tone on the generated rhythm tracings. Results of the automated computerized analysis were compared to human (n = 3) interpretations. Human interpreters manually counted contractions and then recounted the same data two weeks later. Intra-observer, inter-observer, and human-to-computer comparisons were performed. RESULTS: The computer algorithm quantified concentration-dependent changes in contractile frequency, amplitude, and tone after administration of PGE2 (10(-9)-10(-6)M). Concentration-response curves were similar for all contractile components with increases in frequency identified mainly at physiologic concentrations of PGE2 and increases in amplitude at supra-physiologic concentrations. The computer algorithm consistently over-counted the human interpreters, but with less variability. Differences in inter-observer consistency were statistically significant. CONCLUSIONS: Our computerized algorithm accurately and consistently identified changes in detrusor muscle contractile frequency, amplitude, and tone with varying doses of PGE2. Frequency counts were consistently higher than those obtained by human interpreters but without variability or bias. Refinements of this method may allow for more standardized approach in the study of pharmacologic agents on filling phase rhythmic activity.


Subject(s)
Algorithms , Computer Simulation , Muscle Contraction/physiology , Muscle, Smooth/physiology , Urinary Bladder/physiology , Urination/physiology , Animals , Dinoprostone/pharmacology , Dose-Response Relationship, Drug , Female , Male , Models, Animal , Muscle, Smooth/drug effects , Observer Variation , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Rats, Wistar , Urinary Bladder/drug effects
19.
J Urol ; 190(1): 334-40, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23485511

ABSTRACT

PURPOSE: Bladder wall muscle (detrusor) develops low amplitude rhythmic contractions. Low amplitude rhythmic contraction activity is increased in detrusor from patients with overactive bladder. In this in vitro study we used fast Fourier transforms to assess the length dependence of low amplitude rhythmic contraction components. MATERIALS AND METHODS: Rabbit detrusor strips were placed in a muscle bath between 2 clips to adjust length and record isometric tension. Tissues stretched from 70% to 130% of a reference muscle length at 10% increments were allowed to develop low amplitude rhythmic contractions at each length for 20 minutes. Low amplitude rhythmic contraction data were analyzed using fast Fourier transforms and represented by a frequency rather than a time spectrum. RESULTS: Based on fast Fourier transform analysis summarized by signal peaks within specific frequency ranges, rabbit low amplitude rhythmic contraction waveforms were divided into 1 tonic and 2 phasic components, defined as A0 + A1F1 + A2F2, where A0 is a length dependent basal tonic component that increases linearly, A1F1 is a slow wave with a length dependent specific amplitude (A1) and a length independent constant frequency (F1) of approximately 11.2 Hz, and A2F2 is a fast wave with a length dependent amplitude (A2) and frequency (F2) of approximately 0.03 Hz. CONCLUSIONS: Fast Fourier transform analysis revealed that rabbit low amplitude rhythmic contractions consist of a basal tonic component plus 2 phasic components. The amplitude of all 3 components was length dependent. The frequency of the fast component was not length dependent and the slow component was absent at short muscle lengths, developing only at muscle lengths beyond that producing a maximum active contraction.


Subject(s)
Fourier Analysis , Muscle Contraction/physiology , Muscle, Smooth/physiology , Urinary Bladder/physiology , Analysis of Variance , Animals , Female , In Vitro Techniques , Male , Models, Animal , Muscle Relaxation/physiology , Rabbits , Sensitivity and Specificity
20.
Physiol Rep ; 1(6): e00168, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24400167

ABSTRACT

Detrusor smooth muscle exhibits myogenic contraction in response to a quick stretch (QS) as well as spontaneous rhythmic contraction (SRC); however, whether the same population of actomyosin crossbridges with a common regulatory mechanism is responsible for these two types of contraction has not been determined. Detrusor strips from New Zealand white rabbit bladders were allowed to develop SRC at a reference muscle length (L ref), or rhythmic contraction (RC) was induced with tetraethylammonium (TEA). Multiple 10-msec stretches of 15% L ref were then imposed at L ref randomly during the rhythm cycle, and the nadir-to-peak (NTP) tension amplitude of the resulting myogenic contraction was measured. The amplitude and period of the rhythm cycle were measured prior to each QS. NTP was larger when a QS was imposed during a portion the cycle when tension was smaller (n = 3 each SRC and TEA-induced RC). These data suggest that when the rhythmic mechanism was mostly inactive and tension was near a minimum, a larger portion of a shared population of crossbridges was available to produce a myogenic response to a QS. Rho kinase, cyclooxygenase-1, and cyclooxygenase-2 inhibitors (H-1152, SC-560, and NS-398) affected SRC amplitude and NTP amplitude following a QS to the same degree (n = 3 each drug), providing additional evidence to support the hypothesis that a common mechanism is responsible for SRC and myogenic contraction due to QS. If a common mechanism exists, then QS is a potential mechanical probe to study SRC regulation and its alteration in overactive bladder.

SELECTION OF CITATIONS
SEARCH DETAIL
...