Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 13: 894479, 2022.
Article in English | MEDLINE | ID: mdl-35812960

ABSTRACT

Selenium is an essential trace element required for seleno-protein synthesis in many eukaryotic cells excluding higher plants. However, a substantial fraction of organically bound selenide in human nutrition is directly or indirectly derived from plants, which assimilate inorganic selenium into organic seleno-compounds. In humans, selenium deficiency is associated with several health disorders Despite its importance for human health, selenium assimilation and metabolism is barely understood in plants. Here, we analyzed the impact of the two dominant forms of soil-available selenium, selenite and selenate, on plant development and selenium partitioning in plants. We found that the reference plant Arabidopsis thaliana discriminated between selenate and selenite application. In contrast to selenite, selenate was predominantly deposited in leaves. This explicit deposition of selenate caused chlorosis and impaired plant morphology, which was not observed upon selenite application. However, only selenate triggered the accumulation of the macronutrient sulfur, the sister element of selenium in the oxygen group. To understand the oxidation state-specific toxicity mechanisms for selenium in plants, we quantified the impact of selenate and selenite on the redox environment in the plastids and the cytosol in a time-resolved manner. Surprisingly, we found that selenite first caused the oxidation of the plastid-localized glutathione pool and had a marginal impact on the redox state of the cytosolic glutathione pool, specifically in roots. In contrast, selenate application caused more vigorous oxidation of the cytosolic glutathione pool but also impaired the plastidic redox environment. In agreement with the predominant deposition in leaves, the selenate-induced oxidation of both glutathione pools was more pronounced in leaves than in roots. Our results demonstrate that Se-species dependent differences in Se partitioning substantially contribute to whole plant Se toxicity and that these Se species have subcellular compartment-specific impacts on the glutathione redox buffer that correlate with toxicity symptoms.

2.
Int J Mol Sci ; 22(22)2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34830276

ABSTRACT

Cell wall recalcitrance is a major constraint for the exploitation of lignocellulosic biomass as a renewable resource for energy and bio-based products. Transcriptional regulators of the lignin biosynthetic pathway represent promising targets for tailoring lignin content and composition in plant secondary cell walls. However, knowledge about the transcriptional regulation of lignin biosynthesis in lignocellulosic feedstocks, such as Miscanthus, is limited. In Miscanthus leaves, MsSCM1 and MsMYB103 are expressed at growth stages associated with lignification. The ectopic expression of MsSCM1 and MsMYB103 in N. benthamiana leaves was sufficient to trigger secondary cell wall deposition with distinct sugar and lignin compositions. Moreover, RNA-seq analysis revealed that the transcriptional responses to MsSCM1 and MsMYB103 overexpression showed an extensive overlap with the response to the NAC master transcription factor MsSND1, but were distinct from each other, underscoring the inherent complexity of secondary cell wall formation. Furthermore, conserved and previously described promoter elements as well as novel and specific motifs could be identified from the target genes of the three transcription factors. Together, MsSCM1 and MsMYB103 represent interesting targets for manipulations of lignin content and composition in Miscanthus towards a tailored biomass.


Subject(s)
Lignin/biosynthesis , Plant Proteins/metabolism , Poaceae/metabolism , Signal Transduction/genetics , Transcription Factors/metabolism , Biomass , Cell Wall/metabolism , Gene Expression Regulation, Plant , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Proteins/genetics , Plants, Genetically Modified , Poaceae/genetics , Poaceae/growth & development , Promoter Regions, Genetic/genetics , RNA-Seq/methods , Transcription Factors/genetics , Transcriptome/genetics
3.
Int J Mol Sci ; 22(10)2021 May 13.
Article in English | MEDLINE | ID: mdl-34068004

ABSTRACT

Enzymes with fructan exohydrolase (FEH) activity are present not only in fructan-synthesizing species but also in non-fructan plants. This has led to speculation about their functions in non-fructan species. Here, a cell wall invertase-related Zm-6&1-FEH2 with no "classical" invertase motif was identified in maize. Following heterologous expression in Pichia pastoris and in Nicotiana benthamiana leaves, the enzyme activity of recombinant Zm-6&1-FEH2 displays substrate specificity with respect to inulin and levan. Subcellular localization showed Zm-6&1-FEH2 exclusively localized in the apoplast, and its expression profile was strongly dependent on plant development and in response to drought and abscisic acid. Furthermore, formation of 1-kestotriose, an oligofructan, was detected in vivo and in vitro and could be hydrolyzed by Zm-6&1-FEH2. In summary, these results support that Zm-6&1-FEH2 enzyme from maize can degrade both inulin-type and levan-type fructans, and the implications of the co-existence of Zm-6&1-FEH2 and 1-kestotriose are discussed.


Subject(s)
Fructans/metabolism , Glycoside Hydrolases/metabolism , Inulin/metabolism , Trisaccharides/metabolism , Zea mays/metabolism , Glycoside Hydrolases/genetics , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/metabolism , Saccharomycetales/genetics , Saccharomycetales/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Zea mays/growth & development
4.
Int J Biol Macromol ; 163: 630-639, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32622772

ABSTRACT

Fructan exohydrolases (FEHs) are structurally related to cell wall invertases. While the latter are ubiquitous in higher plants, the role of FEHs in non-fructan species has remained enigmatic. To explore possible roles of FEHs in maize, a full length putative Zm-6-FEH-encoding cDNA was cloned displaying high sequence similarity with cell wall invertases. For functional characterization, Zm-6-FEH protein was expressed in Picha pastoris and in Nicotiana benthamiana leaves. Enzyme activity of recombinant Zm-6-FEH protein showed a strong preference for levan as substrate. Expression profiling in maize seedlings revealed higher transcript amounts in the more mature leaf parts as compared to the growth zone at the base of the leaf, in good correlation with FEH enzyme activities. Subcellular localization analysis indicated Zm-6-FEH location in the apoplast. Noteworthy, incubation of leaf discs with levan and co-incubation with high levan-producing bacteria selectively up-regulated transcript levels of Zm-6-FEH, accompanied by an increase of 6-FEH enzyme activity. In summary, the results indicate that Zm-6-FEH, a novel fructan exohydrolase of a non-fructan species, may have a role in plant defense against levan-producing bacteria.


Subject(s)
Bacteria/metabolism , Fructans/chemistry , Hydrolases/chemistry , Zea mays/chemistry , Amino Acid Sequence , Bacteria/enzymology , Carbohydrates/chemistry , Carbohydrates/isolation & purification , Cloning, Molecular , Ectopic Gene Expression , Fructans/biosynthesis , Gene Expression Profiling , Gene Expression Regulation, Plant , Phylogeny , Plant Leaves , Stress, Physiological , Transcriptome , Zea mays/classification , Zea mays/genetics
5.
BMC Plant Biol ; 19(1): 552, 2019 Dec 12.
Article in English | MEDLINE | ID: mdl-31830911

ABSTRACT

BACKGROUND: Understanding lignin biosynthesis and composition is of central importance for sustainable bioenergy and biomaterials production. Species of the genus Miscanthus have emerged as promising bioenergy crop due to their rapid growth and modest nutrient requirements. However, lignin polymerization in Miscanthus is poorly understood. It was previously shown that plant laccases are phenol oxidases that have multiple functions in plant, one of which is the polymerization of monolignols. Herein, we link a newly discovered Miscanthus laccase, MsLAC1, to cell wall lignification. Characterization of recombinant MsLAC1 and Arabidopsis transgenic plants expressing MsLAC1 were carried out to understand the function of MsLAC1 both in vitro and in vivo. RESULTS: Using a comprehensive suite of molecular, biochemical and histochemical analyses, we show that MsLAC1 localizes to cell walls and identify Miscanthus transcription factors capable of regulating MsLAC1 expression. In addition, MsLAC1 complements the Arabidopsis lac4-2 lac17 mutant and recombinant MsLAC1 is able to oxidize monolignol in vitro. Transgenic Arabidopsis plants over-expressing MsLAC1 show higher G-lignin content, although recombinant MsLAC1 seemed to prefer sinapyl alcohol as substrate. CONCLUSIONS: In summary, our results suggest that MsLAC1 is regulated by secondary cell wall MYB transcription factors and is involved in lignification of xylem fibers. This report identifies MsLAC1 as a promising breeding target in Miscanthus for biofuel and biomaterial applications.


Subject(s)
Laccase/genetics , Lignin/chemistry , Plant Proteins/genetics , Poaceae/physiology , Arabidopsis/chemistry , Arabidopsis/genetics , Arabidopsis/physiology , Laccase/metabolism , Lignin/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/chemistry , Plants, Genetically Modified/genetics , Poaceae/chemistry , Poaceae/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism
6.
Int J Mol Sci ; 20(17)2019 Aug 21.
Article in English | MEDLINE | ID: mdl-31438536

ABSTRACT

Invertases (INVs) play essential roles in plant growth in response to environmental cues. Previous work showed that plant invertases can be post-translationally regulated by small protein inhibitors (INVINHs). Here, this study characterizes a proteinaceous inhibitor of INVs in maize (Zm-INVINH4). A functional analysis of the recombinant Zm-INVINH4 protein revealed that it inhibited both cell wall and vacuolar invertase activities from maize leaves. A Zm-INVINH4::green fluorescent protein fusion experiment indicated that this protein localized in the apoplast. Transcript analysis showed that Zm-INVINH4 is specifically expressed in maize sink tissues, such as the base part of the leaves and young kernels. Moreover, drought stress perturbation significantly induced Zm-INVINH4 expression, which was accompanied with a decrease of cell wall invertase (CWI) activities and an increase of sucrose accumulation in both base parts of the leaves 2 to 7 days after pollinated kernels. In summary, the results support the hypothesis that INV-related sink growth in response to drought treatment is (partially) caused by a silencing of INV activity via drought-induced induction of Zm-INVINH4 protein.


Subject(s)
Droughts , Zea mays/metabolism , Abscisic Acid/pharmacology , Cell Wall/drug effects , Cell Wall/metabolism , Gene Expression Regulation, Plant/drug effects , Plant Leaves/drug effects , Plant Leaves/metabolism , beta-Fructofuranosidase/metabolism
7.
Int J Mol Sci ; 20(15)2019 Aug 04.
Article in English | MEDLINE | ID: mdl-31382684

ABSTRACT

About 15% of higher plants have acquired the ability to convert sucrose into fructans. Fructan degradation is catalyzed by fructan exohydrolases (FEHs), which are structurally related to cell wall invertases (CWI). However, the biological function(s) of FEH enzymes in non-fructan species have remained largely enigmatic. In the present study, one maize CWI-related enzyme named Zm-6&1-FEH1, displaying FEH activity, was explored with respect to its substrate specificities, its expression during plant development, and its possible interaction with CWI inhibitor protein. Following heterologous expression in Pichia pastoris and in N. benthamiana leaves, recombinant Zm-6&1-FEH1 revealed substrate specificities of levan and inulin, and also displayed partially invertase activity. Expression of Zm-6&1-FEH1 as monitored by qPCR was strongly dependent on plant development and was further modulated by abiotic stress. To explore whether maize FEH can interact with invertase inhibitor protein, Zm-6&1-FEH1 and maize invertase inhibitor Zm-INVINH1 were co-expressed in N. benthamiana leaves. Bimolecular fluorescence complementation (BiFC) analysis and in vitro enzyme inhibition assays indicated productive complex formation. In summary, the results provide support to the hypothesis that in non-fructan species FEH enzymes may modulate the regulation of CWIs.


Subject(s)
Glycoside Hydrolases/genetics , Plant Leaves/enzymology , Zea mays/enzymology , beta-Fructofuranosidase/genetics , Amino Acid Sequence , Carbohydrate Metabolism/genetics , Fructans/genetics , Fructans/metabolism , Gene Expression Regulation, Plant/genetics , Glycoside Hydrolases/chemistry , Plant Leaves/genetics , Plants, Genetically Modified/enzymology , Plants, Genetically Modified/genetics , Substrate Specificity , Nicotiana/enzymology , Nicotiana/genetics , Zea mays/genetics , beta-Fructofuranosidase/antagonists & inhibitors
8.
BMC Plant Biol ; 19(1): 343, 2019 Aug 06.
Article in English | MEDLINE | ID: mdl-31387524

ABSTRACT

BACKGROUND: European grapevine cultivars (Vitis vinifera spp.) are highly susceptible to the downy mildew pathogen Plasmopara viticola. Breeding of resistant V. vinifera cultivars is a promising strategy to reduce the impact of disease management. Most cultivars that have been bred for resistance to downy mildew, rely on resistance mediated by the Rpv3 (Resistance to P. viticola) locus. However, despite the extensive use of this locus, little is known about the mechanism of Rpv3-mediated resistance. RESULTS: In this study, Rpv3-mediated defense responses were investigated in Rpv3+ and Rpv3- grapevine cultivars following inoculation with two distinct P. viticola isolates avrRpv3+ and avrRpv3-, with the latter being able to overcome Rpv3 resistance. Based on comparative microscopic, metabolomic and transcriptomic analyses, our results show that the Rpv3-1-mediated resistance is associated with a defense mechanism that triggers synthesis of fungi-toxic stilbenes and programmed cell death (PCD), resulting in reduced but not suppressed pathogen growth and development. Functional annotation of the encoded protein sequence of genes significantly upregulated during the Rpv3-1-mediated defense response revealed putative roles in pathogen recognition, signal transduction and defense responses. CONCLUSION: This study used histochemical, transcriptomic and metabolomic analyses of Rpv3+ and susceptible cultivars inoculated with avirulent and virulent P. viticola isolates to investigate mechanism underlying the Rpv3-1-mediated resistance response. We demonstrated a strong correlation between the expressions of stilbene biosynthesis related genes, the accumulation of fungi-toxic stilbenes, pathogen growth inhibition and PCD.


Subject(s)
Disease Resistance/genetics , Genes, Plant/physiology , Stilbenes/metabolism , Vitis/genetics , Gene Expression Regulation, Plant , Metabolome , Oomycetes/pathogenicity , Plant Diseases/microbiology , Transcription, Genetic , Transcriptome , Vitis/immunology , Vitis/microbiology
9.
Biochem J ; 476(7): 1191-1203, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30877193

ABSTRACT

Plant γ-glutamylcysteine ligase (GCL), catalyzing the first and tightly regulated step of glutathione (GSH) biosynthesis, is redox-activated via formation of an intramolecular disulfide bond. In vitro, redox-activation of recombinant GCL protein causes formation of homo-dimers. Here, we have investigated whether dimerization occurs in vivo and if so whether it contributes to redox-activation. FPLC analysis indicated that recombinant redox-activated WT (wild type) AtGCL dissociates into monomers at concentrations below 10-6 M, i.e. below the endogenous AtGCL concentration in plastids, which was estimated to be in the micromolar range. Thus, dimerization of redox-activated GCL is expected to occur in vivo To determine the possible impact of dimerization on redox-activation, AtGCL mutants were generated in which salt bridges or hydrophobic interactions at the dimer interface were interrupted. WT AtGCL and mutant proteins were analyzed by non-reducing SDS-PAGE to address their redox state and probed by FPLC for dimerization status. Furthermore, their substrate kinetics (KM, Vmax) were compared. The results indicate that dimer formation is not required for redox-mediated enzyme activation. Also, crystal structure analysis confirmed that dimer formation does not affect binding of GSH as competitive inhibitor. Whether dimerization affects other enzyme properties, e.g. GCL stability in vivo, remains to be investigated.


Subject(s)
Arabidopsis Proteins/metabolism , Glutamate-Cysteine Ligase/chemistry , Glutamate-Cysteine Ligase/metabolism , Glutathione/biosynthesis , Amino Acid Sequence , Amino Acid Substitution , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Catalytic Domain , Enzyme Activation , Glutamate-Cysteine Ligase/genetics , Kinetics , Models, Molecular , Mutagenesis, Site-Directed , Oxidation-Reduction , Plants, Genetically Modified , Protein Multimerization , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
10.
Plant Cell Environ ; 42(3): 801-814, 2019 03.
Article in English | MEDLINE | ID: mdl-30049021

ABSTRACT

Upon continuous stress exposure, plants display attenuated metabolic stress responses due to regulatory feedback loops. Here, we have tested the hypothesis that pulsed stress exposure with intervening recovery periods should affect these feedback loops, thereby causing increased accumulation of stress-induced metabolites. The response of Arabidopsis plantlets to continuous UV-B exposure (Cuv ) was compared with that of pulsed UV-B exposure (Puv ). The differential responses to Puv versus Cuv were monitored at the level of gene expression and metabolite accumulation, using wild type (WT) and different mutant lines. In comparison with Cuv , Puv increased sinapyl and flavonol (S + F) content, whereas adaptive growth attenuation was reduced. Furthermore, in a myb4 mutant (AtMYB4, repressor-type R2R3-MYB transcription factor), the S + F content was increased only for Cuv , but not beyond the level for Puv observed in WT. These observations and the ability of AtMYB4 to repress AtMYB12/AtMYB111-mediated activation of target gene promoters (pCHS and pFLS) indicate that the increase of S + F content after Puv observed in WT plants results from reduced feedback inhibition by AtMYB4. The results support the notion that stress-induced metabolic changes not necessarily cause a growth penalty. Furthermore, the observed Puv -induced increase in flavonol accumulation may stimulate reevaluation of commercial plant production practices.


Subject(s)
Arabidopsis/radiation effects , Ultraviolet Rays/adverse effects , Arabidopsis/growth & development , Arabidopsis/metabolism , Dose-Response Relationship, Radiation , Flavonoids/metabolism , Gene Expression Regulation, Plant/radiation effects , Promoter Regions, Genetic , RNA, Plant/genetics , RNA, Plant/metabolism , Seedlings/growth & development , Seedlings/metabolism , Seedlings/radiation effects , Stress, Physiological/radiation effects
11.
J Exp Bot ; 68(15): 4323-4338, 2017 07 10.
Article in English | MEDLINE | ID: mdl-28922763

ABSTRACT

In the biennial Cichorium intybus, inulin-type fructans accumulate in the taproot during the first year. Upon cold or drought exposure, fructans are degraded by fructan exohydrolases, affecting inulin yield and degree of polymerization. While stress-induced expression of 1-FEH genes has been thoroughly explored, the transcriptional network mediating these responses has remained unknown. In this study, several R2R3-MYB transcriptional regulators were analysed for their possible involvement in 1-FEH regulation via transient transactivation of 1-FEH target promoters and for in vivo co-expression with target genes under different stress and hormone treatments. CiMYB3 and CiMYB5 selectively enhanced promoter activities of 1-FEH1, 1-FEH2a, and 1-FEH2b genes, without affecting promoter activities of fructosyltransferase genes. Both factors recognized the MYB-core motifs (C/TNGTTA/G) that are abundantly present in 1-FEH promoters. In chicory hairy root cultures, CiMYB5 displayed co-expression with its target genes in response to different abiotic stress and phytohormone treatments, whereas correlations with CiMYB3 expression were less consistent. Oligofructan levels indicated that the metabolic response, while depending on the balance of the relative expression levels of fructan exohydrolases and fructosyltransferases, could be also affected by differential subcellular localization of different FEH isoforms. The results indicate that in chicory hairy root cultures CiMYB5 and CiMYB3 act as positive regulators of the fructan degradation pathway.


Subject(s)
Cichorium intybus/genetics , Fructans/metabolism , Gene Expression Regulation, Plant , Glycoside Hydrolases/metabolism , Plant Proteins/genetics , Transcription Factors/genetics , Cichorium intybus/metabolism , Metabolic Networks and Pathways , Plant Proteins/metabolism , Transcription Factors/metabolism
12.
New Phytol ; 215(1): 281-298, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28452060

ABSTRACT

In Cichorium intybus, inulin metabolism is mediated by fructan-active enzymes (FAZYs): sucrose:sucrose 1-fructosyltransferase (1-SST), fructan:fructan 1-fructosyltransferase (1-FFT), and fructan 1-exohydrolases 1, 2a and 2b (1-FEH1, -2a and -2b), respectively. While these enzymes have been rigorously characterized, the transcriptional network orchestrating their development- and stress-related expression has remained largely unknown. Here, the possible role of R2R3-MYB transcription factors in FAZY regulation was explored via bioinformatic identification of R2R3-MYBs (using an RNA sequencing (RNAseq) database), studies of co-expression of these factors with target genes, in vivo transient transactivation assays of FAZY target promoters (dual luciferase assay), and a yeast one-hybrid assay investigating the specificity of the binding of these factors to cis-elements. The chicory MYB transcription factor CiMYB17 specifically activated promoters of 1-SST and 1-FFT by binding to the consensus DNA-motif DTTHGGT. Unexpectedly, CiMYB17 also activated promoters of fructan exohydrolase genes. The stimulatory effect on promoter activities of sucrose transporter and cell wall invertase genes points to a general role in regulating the source-sink relationship. Co-induction of CiMYB17 with 1-SST and 1-FFT (and, less consistently, with 1-FEH1/2) in nitrogen-starved or abscisic acid (ABA)-treated chicory seedlings and in salt-stressed chicory hairy roots supports a role in stress-induced fructan metabolism, including de novo fructan synthesis and trimming of pre-existing fructans, whereas the reduced expression of CiMYB17 in developing taproots excludes a role in fructan accumulation under normal growth conditions.


Subject(s)
Cichorium intybus/genetics , Fructans/biosynthesis , Gene Expression Regulation, Plant , Plant Proteins/physiology , Transcription Factors/physiology , Cichorium intybus/metabolism , Fructans/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Promoter Regions, Genetic , Stress, Physiological , Transcription Factors/genetics , Transcription Factors/metabolism
13.
J Exp Bot ; 68(3): 469-482, 2017 01 01.
Article in English | MEDLINE | ID: mdl-28204559

ABSTRACT

Cell wall invertase (CWI) and vacuolar invertase (VI) play multiple functions in plant growth. As well as depending on transcriptional and post-transcriptional regulation, there is growing evidence that CWI and VI are also subject to post-translational control by small inhibitory proteins. Despite the significance of this, genes encoding inhibitors, their molecular and biochemical properties, and their potential roles in regulating seed production have not been well documented in soybean (Glycine max). In this study, two invertase inhibitor isoforms, GmCIF1 and GmC/VIF2, were characterized to possess inhibitory activities in vitro via heterologous expression. Transcript analyses showed that they were predominantly expressed in developing seeds and in response to ABA. In accordance with this, surveys of primary targets showed subcellular localizations to the apoplast in tobacco epidermis after expressing YFP-fusion constructs. Investigations using RNAi transgenic plants demonstrated marked elevations of CWI activities and improvements in seed weight in conjunction with higher accumulations of hexoses, starch, and protein in mature seeds. Further co-expression analyses of GmCIF1 with several putative CWI genes corroborated the notion that GmCIF1 modulation of CWI that affects seed weight is mainly contingent on post-translational mechanisms. Overall, the results suggest that post-translational elevation of CWI by silencing of GmCIF1 expression orchestrates the process of seed maturation through fine-tuning sucrose metabolism and sink strength.


Subject(s)
Gene Expression Regulation, Plant , Glycine max/physiology , Plant Proteins/genetics , Seeds/physiology , beta-Fructofuranosidase/genetics , Amino Acid Sequence , Plant Proteins/chemistry , Plant Proteins/metabolism , Sequence Alignment , Glycine max/genetics , beta-Fructofuranosidase/chemistry , beta-Fructofuranosidase/metabolism
14.
Plant Direct ; 1(5): e00024, 2017 Nov.
Article in English | MEDLINE | ID: mdl-31245671

ABSTRACT

Cell wall recalcitrance is a major limitation for the sustainable exploitation of lignocellulosic biomass as a renewable resource. Species and hybrids of the genus Miscanthus have emerged as candidate crops for the production of lignocellulosic feedstock in temperate climates, and dedicated efforts are underway to improve biomass yield. However, nothing is known about the molecular players involved in Miscanthus cell wall biosynthesis to facilitate breeding efforts towards tailored biomass. Here, we identify a Miscanthus sinensis transcription factor related to SECONDARY WALL-ASSOCIATED NAC DOMAIN1 (SND1), which acts as a master switch for the regulation of secondary cell wall formation and lignin biosynthesis. MsSND1 is expressed in growth stages associated with secondary cell wall formation, together with its potential targets. Consistent with this observation, MsSND1 was able to complement the secondary cell wall defects of the Arabidopsis snd1 nst1 double mutant, and ectopic expression of MsSND1 in tobacco leaves was sufficient to trigger patterned deposition of cellulose, hemicellulose, and lignin reminiscent of xylem elements. Transgenic studies in Arabidopsis thaliana plants revealed that MsSND1 regulates, directly and indirectly, the expression of a broad range of genes involved in secondary cell wall formation, including MYB transcription factors which regulate only a subset of the SCW differentiation program. Together, our findings suggest that MsSND1 is a transcriptional master regulator orchestrating secondary cell wall biosynthesis in Miscanthus.

15.
Front Plant Sci ; 7: 1806, 2016.
Article in English | MEDLINE | ID: mdl-27994611

ABSTRACT

In chicory taproot, the inulin-type fructans serve as carbohydrate reserve. Inulin metabolism is mediated by fructan active enzymes (FAZYs): sucrose:sucrose 1-fructosyltransferase (1-SST; fructan synthesis), fructan:fructan-1-fructosyltransferase (1-FFT; fructan synthesis and degradation), and fructan 1-exohydrolases (1-FEH1/2a/2b; fructan degradation). In developing taproot, fructan synthesis is affected by source-to-sink sucrose transport and sink unloading. In the present study, expression of FAZYs, sucrose transporter and CWI isoforms, vacuolar invertase and sucrose synthase was determined in leaf blade, petiole and taproot of young chicory plants (taproot diameter: 2 cm) and compared with taproot fructan profiles for the following scenarios: (i) N-starvation, (ii) abscisic acid (ABA) treatment, (iii) ethylene treatment (via 1-aminoyclopropane-1-carboxylic acid [ACC]), and (iv) cold treatment. Both N-starvation and ABA treatment induced an increase in taproot oligofructans. However, while under N-starvation this increase reflected de novo synthesis, under ABA treatment gene expression profiles indicated a role for both de novo synthesis and degradation of long-chain fructans. Conversely, under ACC and cold treatment oligofructans slightly decreased, correlating with reduced expression of 1-SST and 1-FFT and increased expression of FEHs and VI. Distinct SUT and CWI expression profiles were observed, indicating a functional alignment of SUT and CWI expression with taproot fructan metabolism under different source-sink scenarios.

16.
Plant Mol Biol ; 90(1-2): 137-55, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26546341

ABSTRACT

In higher plants, cell wall invertase (CWI) and vacuolar invertase (VI) are recognized as essential players in sugar metabolism and sugar signaling, thereby affecting source-sink interactions, plant development and responses to environmental cues. CWI and VI expression levels are transcriptionally controlled; however, both enzymes are also subject to posttranslational control by invertase inhibitor proteins. The physiological significances of inhibitor proteins during seed germination and early seedling development are not yet fully understood. Here, we demonstrate that the inhibitor isoform AtCIF1 impacted on seed germination and early seedling growth in Arabidopsis. The primary target of AtCIF1 was shown to be localized to the apoplast after expressing an AtCIF1 YFP-fusion construct in tobacco epidermis and transgenic Arabidopsis root. The analysis of expression patterns showed that AtCWI1 was co-expressed spatiotemporally with AtCIF1 within the early germinating seeds. Seed germination was observed to be accelerated independently of exogenous abscisic acid (ABA) in the AtCIF1 loss-of-function mutant cif1-1. This effect coincided with a drastic increase of CWI activity in cif1-1 mutant seeds by 24 h after the onset of germination, both in vitro and in planta. Accordingly, quantification of sugar content showed that hexose levels were significantly boosted in germinating seeds of the cif1-1 mutant. Further investigation of AtCIF1 overexpressors in Arabidopsis revealed a markedly suppressed CWI activity as well as delayed seed germination. Thus, we conclude that the posttranslational modulation of CWI activity by AtCIF1 helps to orchestrate seed germination and early seedling growth via fine-tuning sucrose hydrolysis and, possibly, sugar signaling.


Subject(s)
Arabidopsis/enzymology , Gene Expression Regulation, Plant , Signal Transduction , beta-Fructofuranosidase/antagonists & inhibitors , Abscisic Acid/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/antagonists & inhibitors , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Biological Transport , Cell Wall/enzymology , Gene Expression , Genes, Reporter , Germination , Mutation , Phylogeny , Plant Epidermis/enzymology , Plant Epidermis/genetics , Plant Epidermis/growth & development , Plant Growth Regulators/metabolism , Plant Roots/enzymology , Plant Roots/genetics , Plant Roots/growth & development , Plants, Genetically Modified , Seedlings/enzymology , Seedlings/genetics , Seedlings/growth & development , Nicotiana/enzymology , Nicotiana/genetics , beta-Fructofuranosidase/genetics , beta-Fructofuranosidase/metabolism
17.
New Phytol ; 208(3): 873-86, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26075497

ABSTRACT

Root colonization by the beneficial fungus Piriformospora indica is controlled by plant innate immunity, but factors that channel this interaction into a mutualistic relationship are not known. We have explored the impact of abscisic acid (ABA) and osmotic stress on the P. indica interaction with Arabidopsis thaliana. The activation of plant innate immunity in roots was determined by measuring the concentration of the phytoalexin camalexin and expression of transcription factors regulating the biosynthesis of tryptophan-related defence metabolites. Furthermore, the impact of the fungus on the content of ABA, salicylic acid, jasmonic acid (JA) and JA-related metabolites was examined. We demonstrated that treatment with exogenous ABA or the ABA analogue pyrabactin increased fungal colonization efficiency without impairment of plant fitness. Concomitantly, ABA-deficient mutants of A. thaliana (aba1-6 and aba2-1) were less colonized, while plants exposed to moderate stress were more colonized than corresponding controls. Sustained exposure to ABA attenuated expression of transcription factors MYB51, MYB122 and WRKY33 in roots upon P. indica challenge or chitin treatment, and prevented an increase in camalexin content. The results indicate that ABA can strengthen the interaction with P. indica as a consequence of its impact on plant innate immunity. Consequently, ABA will be relevant for the establishment and outcome of the symbiosis under stress conditions.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis/microbiology , Basidiomycota/physiology , Plant Roots/microbiology , Arabidopsis/immunology , Arabidopsis/metabolism , Ethylenes , Gene Expression Regulation, Plant , Immunity, Innate , Indoles/metabolism , Naphthalenes , Osmotic Pressure , Plant Roots/immunology , Plant Roots/metabolism , Stress, Physiological , Sulfonamides , Symbiosis , Thiazoles/metabolism , Tryptophan/metabolism
18.
J Exp Bot ; 66(7): 1935-50, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25628332

ABSTRACT

The role of the redox-active tripeptide glutathione in plant defence against pathogens has been studied extensively; however, the impact of changes in cellular glutathione redox potential on signalling processes during defence reactions has remained elusive. This study explored the impact of elevated glutathione content on the cytosolic redox potential and on early defence signalling at the level of mitogen-activated protein kinases (MAPKs), as well as on subsequent defence reactions, including changes in salicylic acid (SA) content, pathogenesis-related gene expression, callose depositions, and the hypersensitive response. Wild-type (WT) Nicotiana tabacum L. and transgenic high-glutathione lines (HGL) were transformed with the cytosol-targeted sensor GRX1-roGFP2 to monitor the cytosolic redox state. Surprisingly, HGLs displayed an oxidative shift in their cytosolic redox potential and an activation of the tobacco MAPKs wound-induced protein kinase (WIPK) and SA-induced protein kinase (SIPK). This activation occurred in the absence of any change in free SA content, but was accompanied by constitutively increased expression of several defence genes. Similarly, rapid activation of MAPKs could be induced in WT tobacco by exposure to either reduced or oxidized glutathione. When HGL plants were challenged with adapted or non-adapted Pseudomonas syringae pathovars, the cytosolic redox shift was further amplified and the defence response was markedly increased, showing a priming effect for SA and callose; however, the initial and transient hyperactivation of MAPK signalling was attenuated in HGLs. The results suggest that, in tobacco, MAPK and SA signalling may operate independently, both possibly being modulated by the glutathione redox potential. Possible mechanisms for redox-mediated MAPK activation are discussed.


Subject(s)
Glutathione/metabolism , Mitogen-Activated Protein Kinases/metabolism , Nicotiana/enzymology , Plant Diseases/immunology , Plant Proteins/metabolism , Salicylic Acid/metabolism , Gene Expression Regulation, Plant , Genes, Reporter , MAP Kinase Signaling System , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/immunology , Oxidation-Reduction , Plant Leaves/enzymology , Plant Leaves/genetics , Plant Leaves/immunology , Plant Proteins/genetics , Plants, Genetically Modified , Pseudomonas syringae/physiology , Nicotiana/genetics , Nicotiana/immunology
19.
Proc Natl Acad Sci U S A ; 111(42): 15261-6, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-25288746

ABSTRACT

The brassinosteroid (BR) signaling module is a central regulator of plant morphogenesis, as indicated by the large number of BR-responsive cell wall-related genes and the severe growth defects of BR mutants. Despite a detailed knowledge of the signaling components, the logic of this auto-/paracrine signaling module in growth control remains poorly understood. Recently, extensive cross-talk with other signaling pathways has been shown, suggesting that the outputs of BR signaling, such as gene-expression changes, are subject to complex control mechanisms. We previously provided evidence for a role of BR signaling in a feedback loop controlling the integrity of the cell wall. Here, we identify the first dedicated component of this feedback loop: a receptor-like protein (RLP44), which is essential for the compensatory triggering of BR signaling upon inhibition of pectin de-methylesterification in the cell wall. RLP44 is required for normal growth and stress responses and connects with the BR signaling pathway, presumably through a direct interaction with the regulatory receptor-like kinase BAK1. These findings corroborate a role for BR in controlling the sensitivity of a feedback signaling module involved in maintaining the physico-chemical homeostasis of the cell wall during cell expansion.


Subject(s)
Brassinosteroids/chemistry , Pectins/chemistry , Plant Proteins/physiology , Arabidopsis Proteins/physiology , Cell Wall/metabolism , Cloning, Molecular , Gene Expression Profiling , Gene Expression Regulation, Plant , Homeostasis , Ligands , Microscopy, Confocal , Mutation , Phenotype , Protein Binding , Protein Interaction Mapping , Protein Serine-Threonine Kinases/physiology , Signal Transduction
20.
Plant Cell ; 25(10): 4135-49, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24151295

ABSTRACT

Plant stilbenes are phytoalexins that accumulate in a small number of plant species, including grapevine (Vitis vinifera), in response to biotic and abiotic stresses and have been implicated in many beneficial effects on human health. In particular, resveratrol, the basic unit of all other complex stilbenes, has received widespread attention because of its cardio-protective, anticarcinogenic, and antioxidant properties. Although stilbene synthases (STSs), the key enzymes responsible for resveratrol biosynthesis, have been isolated and characterized from several plant species, the transcriptional regulation underlying stilbene biosynthesis is unknown. Here, we report the identification and functional characterization of two R2R3-MYB-type transcription factors (TFs) from grapevine, which regulate the stilbene biosynthetic pathway. These TFs, designated MYB14 and MYB15, strongly coexpress with STS genes, both in leaf tissues under biotic and abiotic stress and in the skin and seed of healthy developing berries during maturation. In transient gene reporter assays, MYB14 and MYB15 were demonstrated to specifically activate the promoters of STS genes, and the ectopic expression of MYB15 in grapevine hairy roots resulted in increased STS expression and in the accumulation of glycosylated stilbenes in planta. These results demonstrate the involvement of MYB14 and MYB15 in the transcriptional regulation of stilbene biosynthesis in grapevine.


Subject(s)
Plant Proteins/metabolism , Stilbenes/metabolism , Transcription Factors/metabolism , Vitis/metabolism , Acyltransferases/metabolism , Cloning, Molecular , Fruit/metabolism , Gene Expression Regulation, Plant , Molecular Sequence Data , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Promoter Regions, Genetic , Transcription Factors/genetics , Vitis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...