Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 119(34): e2202926119, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35969786

ABSTRACT

The Ca2+-activated SK4 K+ channel is gated by Ca2+-calmodulin (CaM) and is expressed in immune cells, brain, and heart. A cryoelectron microscopy (cryo-EM) structure of the human SK4 K+ channel recently revealed four CaM molecules per channel tetramer, where the apo CaM C-lobe and the holo CaM N-lobe interact with the proximal carboxyl terminus and the linker S4-S5, respectively, to gate the channel. Here, we show that phosphatidylinositol 4-5 bisphosphate (PIP2) potently activates SK4 channels by docking to the boundary of the CaM-binding domain. An allosteric blocker, BA6b9, was designed to act to the CaM-PIP2-binding domain, a previously untargeted region of SK4 channels, at the interface of the proximal carboxyl terminus and the linker S4-S5. Site-directed mutagenesis, molecular docking, and patch-clamp electrophysiology indicate that BA6b9 inhibits SK4 channels by interacting with two specific residues, Arg191 and His192 in the linker S4-S5, not conserved in SK1-SK3 subunits, thereby conferring selectivity and preventing the Ca2+-CaM N-lobe from properly interacting with the channel linker region. Immunohistochemistry of the SK4 channel protein in rat hearts showed a widespread expression in the sarcolemma of atrial myocytes, with a sarcomeric striated Z-band pattern, and a weaker occurrence in the ventricle but a marked incidence at the intercalated discs. BA6b9 significantly prolonged atrial and atrioventricular effective refractory periods in rat isolated hearts and reduced atrial fibrillation induction ex vivo. Our work suggests that inhibition of SK4 K+ channels by targeting drugs to the CaM-PIP2-binding domain provides a promising anti-arrhythmic therapy.


Subject(s)
Atrial Fibrillation , Calmodulin , Intermediate-Conductance Calcium-Activated Potassium Channels , Potassium Channel Blockers , Animals , Atrial Fibrillation/drug therapy , Calcium Signaling , Calmodulin/metabolism , Cryoelectron Microscopy , Humans , Intermediate-Conductance Calcium-Activated Potassium Channels/antagonists & inhibitors , Intermediate-Conductance Calcium-Activated Potassium Channels/metabolism , Molecular Docking Simulation , Mutagenesis, Site-Directed , Phosphatidylinositol 4,5-Diphosphate , Potassium Channel Blockers/pharmacology , Rats
2.
Cell Mol Life Sci ; 77(14): 2795-2813, 2020 Jul.
Article in English | MEDLINE | ID: mdl-31562564

ABSTRACT

Neurofibrillary tangles of the Tau protein and plaques of the amyloid ß peptide are hallmarks of Alzheimer's disease (AD), which is characterized by the conversion of monomeric proteins/peptides into misfolded ß-sheet rich fibrils. Halting the fibrillation process and disrupting the existing aggregates are key challenges for AD drug development. Previously, we performed in vitro high-throughput screening for the identification of potent inhibitors of Tau aggregation using a proxy model, a highly aggregation-prone hexapeptide fragment 306VQIVYK311 (termed PHF6) derived from Tau. Here we have characterized a hit molecule from that screen as a modulator of Tau aggregation using in vitro, in silico, and in vivo techniques. This molecule, an anthraquinone derivative named Purpurin, inhibited ~ 50% of PHF6 fibrillization in vitro at equimolar concentration and disassembled pre-formed PHF6 fibrils. In silico studies showed that Purpurin interacted with key residues of PHF6, which are responsible for maintaining its ß-sheets conformation. Isothermal titration calorimetry and surface plasmon resonance experiments with PHF6 and full-length Tau (FL-Tau), respectively, indicated that Purpurin interacted with PHF6 predominantly via hydrophobic contacts and displayed a dose-dependent complexation with FL-Tau. Purpurin was non-toxic when fed to Drosophila and it significantly ameliorated the AD-related neurotoxic symptoms of transgenic flies expressing WT-FL human Tau (hTau) plausibly by inhibiting Tau accumulation and reducing Tau phosphorylation. Purpurin also reduced hTau accumulation in cell culture overexpressing hTau. Importantly, Purpurin efficiently crossed an in vitro human blood-brain barrier model. Our findings suggest that Purpurin could be a potential lead molecule for AD therapeutics.


Subject(s)
Alzheimer Disease/drug therapy , Anthraquinones/pharmacology , Oligopeptides/genetics , Protein Aggregates/drug effects , tau Proteins/genetics , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Peptides/drug effects , Animals , Animals, Genetically Modified/genetics , Blood-Brain Barrier/drug effects , Disease Models, Animal , Drosophila melanogaster/genetics , Humans , Hydrophobic and Hydrophilic Interactions , Peptide Fragments/antagonists & inhibitors , Peptide Fragments/genetics , Phosphorylation/drug effects , Protein Conformation, beta-Strand/drug effects , Repressor Proteins/antagonists & inhibitors , Repressor Proteins/genetics
3.
Nat Commun ; 10(1): 62, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30622276

ABSTRACT

The extension of the amyloid hypothesis to include non-protein metabolite assemblies invokes a paradigm for the pathology of inborn error of metabolism disorders. However, a direct demonstration of the assembly of metabolite amyloid-like structures has so far been provided only in vitro. Here, we established an in vivo model of adenine self-assembly in yeast, in which toxicity is associated with intracellular accumulation of the metabolite. Using a strain blocked in the enzymatic pathway downstream to adenine, we observed a non-linear dose-dependent growth inhibition. Both the staining with an indicative amyloid dye and anti-adenine assemblies antibodies demonstrated the accumulation of adenine amyloid-like structures, which were eliminated by lowering the supplied adenine levels. Treatment with a polyphenol inhibitor reduced the occurrence of amyloid-like structures while not affecting the dramatic increase in intracellular adenine concentration, resulting in inhibition of cytotoxicity, further supporting the notion that toxicity is triggered by adenine assemblies.


Subject(s)
Adenine/metabolism , Amyloid/metabolism , Metabolism, Inborn Errors/etiology , Saccharomyces cerevisiae/metabolism , Adenine/toxicity , Amyloid/toxicity , Metabolism, Inborn Errors/metabolism
4.
Biochim Biophys Acta Gen Subj ; 1862(7): 1565-1575, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29634991

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is the most common neurodegenerative disorder which is characterized by the deposits of intra-cellular tau protein and extra-cellular amyloid-ß (Aß) peptides in the human brain. Understanding the mechanism of protein aggregation and finding compounds that are capable of inhibiting its aggregation is considered to be highly important for disease therapy. METHODS: We used an in vitro High-Throughput Screening for the identification of potent inhibitors of tau aggregation using a proxy model; a highly aggregation-prone hexapeptide fragment 306VQIVYK311 derived from tau. Using ThS fluorescence assay we screened a library of 2401 FDA approved, bio-active and natural compounds in attempt to find molecules which can efficiently modulate tau aggregation. RESULTS: Among the screened compounds, palmatine chloride (PC) alkaloid was able to dramatically reduce the aggregation propensity of PHF6 at sub-molar concentrations. PC was also able to disassemble preformed aggregates of PHF6 and reduce the amyloid content in a dose-dependent manner. Insights obtained from MD simulation showed that PC interacted with the key residues of PHF6 responsible for ß-sheet formation, which could likely be the mechanism of inhibition and disassembly. Furthermore, PC could effectively inhibit the aggregation of full-length tau and disassemble preformed aggregates. CONCLUSIONS: We found that PC possesses "dual functionality" towards PHF6 and full-length tau, i.e. inhibit their aggregation and disassemble pre-formed fibrils. GENERAL SIGNIFICANCE: The "dual functionality" of PC is valuable as a disease modifying strategy for AD, and other tauopathies, by inhibiting their progress and reducing the effect of fibrils already present in the brain.


Subject(s)
Berberine Alkaloids/pharmacology , Peptide Fragments/drug effects , tau Proteins/drug effects , Adrenal Gland Neoplasms/pathology , Amyloid/drug effects , Amyloid/ultrastructure , Circular Dichroism , Computer Simulation , High-Throughput Screening Assays , Humans , In Vitro Techniques , Molecular Docking Simulation , Peptide Fragments/chemistry , Pheochromocytoma/pathology , Protein Aggregation, Pathological , Tumor Cells, Cultured , tau Proteins/chemistry
5.
J Am Chem Soc ; 137(49): 15366-9, 2015 Dec 16.
Article in English | MEDLINE | ID: mdl-26629885

ABSTRACT

Hapalindoles are bioactive indole alkaloids with fascinating polycyclic ring systems whose biosynthetic assembly mechanism has remained unknown since their initial discovery in the 1980s. In this study, we describe the fam gene cluster from the cyanobacterium Fischerella ambigua UTEX 1903 encoding hapalindole and ambiguine biosynthesis along with the characterization of two aromatic prenyltransferases, FamD1 and FamD2, and a previously undescribed cyclase, FamC1. These studies demonstrate that FamD2 and FamC1 act in concert to form the tetracyclic core ring system of the hapalindoles from cis-indole isonitrile and geranyl pyrophosphate through a presumed biosynthetic Cope rearrangement and subsequent 6-exo-trig cyclization/electrophilic aromatic substitution reaction.


Subject(s)
Indole Alkaloids/metabolism , Amino Acid Sequence , Cyanobacteria/genetics , Indole Alkaloids/chemistry , Molecular Sequence Data , Molecular Structure , Multigene Family/genetics
6.
J Nat Prod ; 78(10): 2411-22, 2015 Oct 23.
Article in English | MEDLINE | ID: mdl-26465675

ABSTRACT

Methods to identify the bioactive diversity within natural product extracts (NPEs) continue to evolve. NPEs constitute complex mixtures of chemical substances varying in structure, composition, and abundance. NPEs can therefore be challenging to evaluate efficiently with high-throughput screening approaches designed to test pure substances. Here we facilitate the rapid identification and prioritization of antimalarial NPEs using a pharmacologically driven, quantitative high-throughput-screening (qHTS) paradigm. In qHTS each NPE is tested across a concentration range from which sigmoidal response, efficacy, and apparent EC50s can be used to rank order NPEs for subsequent organism reculture, extraction, and fractionation. Using an NPE library derived from diverse marine microorganisms we observed potent antimalarial activity from two Streptomyces sp. extracts identified from thousands tested using qHTS. Seven compounds were isolated from two phylogenetically related Streptomyces species: Streptomyces ballenaensis collected from Costa Rica and Streptomyces bangulaensis collected from Papua New Guinea. Among them we identified actinoramides A and B, belonging to the unusually elaborated nonproteinogenic amino-acid-containing tetrapeptide series of natural products. In addition, we characterized a series of new compounds, including an artifact, 25-epi-actinoramide A, and actinoramides D, E, and F, which are closely related biosynthetic congeners of the previously reported metabolites.


Subject(s)
Antimalarials/isolation & purification , Antimalarials/pharmacology , Biological Products/isolation & purification , Biological Products/pharmacology , Oligopeptides/isolation & purification , Oligopeptides/pharmacology , Streptomyces/chemistry , Antimalarials/chemistry , Biological Products/chemistry , Costa Rica , Geologic Sediments/chemistry , Marine Biology , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Oligopeptides/chemistry , Papua New Guinea , Phylogeny , Plasmodium falciparum/drug effects , Streptomyces/genetics
7.
J Biomol Screen ; 20(5): 673-80, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25550354

ABSTRACT

Alphaviruses are a prominent class of reemergent pathogens due to their globally expanding ranges, potential for lethality, and possible use as bioweapons. The absence of effective treatments for alphaviruses highlights the need for innovative strategies to identify antiviral agents. Primary screens that use noninfectious self-replicating RNAs, termed replicons, have been used to identify potential antiviral compounds for alphaviruses. Only inhibitors of viral genome replication, however, will be identified using replicons, which excludes many other druggable steps in the viral life cycle. To address this limitation, we developed a western equine encephalitis virus pseudoinfectious particle system that reproduces several crucial viral life cycle steps in addition to genome replication. We used this system to screen a library containing ~26,000 extracts derived from marine microbes, and we identified multiple bacterial strains that produce compounds with potential antiviral activity. We subsequently used pseudoinfectious particle and replicon assays in parallel to counterscreen candidate extracts, and followed antiviral activity during biochemical fractionation and purification to differentiate between inhibitors of viral entry and genome replication. This novel process led to the isolation of a known alphavirus entry inhibitor, bafilomycin, thereby validating the approach for the screening and identification of potential antiviral compounds.


Subject(s)
Alphavirus/drug effects , Alphavirus/physiology , Antiviral Agents/pharmacology , Biological Products/pharmacology , Drug Discovery/methods , Animals , Antiviral Agents/chemistry , Biological Products/chemistry , Cell Line , Dose-Response Relationship, Drug , High-Throughput Screening Assays , Humans , Inhibitory Concentration 50 , Microbial Sensitivity Tests/methods , Reproducibility of Results , Small Molecule Libraries , Virus Replication/drug effects
8.
Mol Pharmacol ; 86(4): 406-16, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25086086

ABSTRACT

Biochemical high-throughput screening is widely used in drug discovery, using a variety of small molecule libraries. However, broader screening strategies may be more beneficial to identify novel biologic mechanisms. In the current study we used a ß-galactosidase complementation method to screen a selection of microbial-derived pre-fractionated natural product extracts for those that increase regulator of G protein signaling 2 (RGS2) protein levels. RGS2 is a member of a large family of proteins that all regulate signaling through G protein-coupled receptors (GPCRs) by accelerating GTPase activity on active Gα as well as through other mechanisms. RGS2(-/-) mice are hypertensive, show increased anxiety, and are prone to heart failure. RGS2 has a very short protein half-life due to rapid proteasomal degradation, and we propose that enhancement of RGS2 protein levels could be a beneficial therapeutic strategy. Bioassay-guided fractionation of one of the hit strains yielded a pure compound, Indolactam V, a known protein kinase C (PKC) activator, which selectively increased RGS2 protein levels in a time- and concentration-dependent manner. Similar results were obtained with phorbol 12-myristate 13-acetate as well as activation of the Gq-coupled muscarinic M3 receptor. The effect on RGS2 protein levels was blocked by the nonselective PKC inhibitor Gö6983 (3-[1-[3-(dimethylamino)propyl]-5-methoxy-1H-indol-3-yl]-4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione), the PKCß-selective inhibitor Ruboxastaurin, as well as small interfering RNA-mediated knockdown of PKCß. Indolactam V-mediated increases in RGS2 protein levels also had functional effects on GPCR signaling. This study provides important proof-of-concept for our screening strategy and could define a negative feedback mechanism in Gq/Phospholipase C signaling through RGS2 protein upregulation.


Subject(s)
Biological Products/pharmacology , Indoles/pharmacology , Lactams/pharmacology , Protein Kinase C beta/drug effects , RGS Proteins/metabolism , Small Molecule Libraries/pharmacology , Up-Regulation , Actinobacteria/chemistry , Animals , HEK293 Cells , High-Throughput Screening Assays , Humans , Maleimides/pharmacology , Myocytes, Smooth Muscle/drug effects , Phenotype , Protein Kinase C beta/antagonists & inhibitors , Protein Kinase C beta/metabolism , Protein Kinase Inhibitors/pharmacology , RGS Proteins/genetics , Rats , Receptor, Muscarinic M3/agonists , Tetradecanoylphorbol Acetate/pharmacology
9.
Chem Biol Drug Des ; 83(4): 440-9, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24636344

ABSTRACT

Proteins with expanded polyglutamine (polyQ) segments cause a number of fatal neurodegenerative disorders, including Huntington's disease (HD). Previous high-throughput screens in cellular and biochemical models of HD have revealed compounds that mitigate polyQ aggregation and proteotoxicity, providing insight into the mechanisms of disease and leads for potential therapeutics. However, the structural diversity of natural products has not yet been fully mobilized toward these goals. Here, we have screened a collection of ~11 000 natural product extracts for the ability to recover the slow growth of ΔProQ103-expressing yeast cells in 384-well plates (Z' ~ 0.7, CV ~ 8%). This screen identified actinomycin D as a strong inhibitor of polyQ aggregation and proteotoxicity at nanomolar concentrations (~50-500 ng/mL). We found that a low dose of actinomycin D increased the levels of the heat-shock proteins Hsp104, Hsp70 and Hsp26 and enhanced binding of Hsp70 to the polyQ in yeast. Actinomycin also suppressed aggregation of polyQ in mammalian cells, suggesting a conserved mechanism. These results establish natural products as a rich source of compounds with interesting mechanisms of action against polyQ disorders.


Subject(s)
Biological Products/chemistry , High-Throughput Screening Assays , Models, Biological , Peptides/genetics , Animals , Biological Products/analysis , Dactinomycin/pharmacology , Gene Expression Regulation/drug effects , Humans , PC12 Cells , Peptides/chemistry , Protein Aggregation, Pathological/drug therapy , Rats , Saccharomyces cerevisiae
10.
PLoS One ; 8(12): e82318, 2013.
Article in English | MEDLINE | ID: mdl-24349254

ABSTRACT

Natural products provide a vast array of chemical structures to explore in the discovery of new medicines. Although secondary metabolites produced by microbes have been developed to treat a variety of diseases, including bacterial and fungal infections, to date there has been limited investigation of natural products with antiviral activity. In this report, we used a phenotypic cell-based replicon assay coupled with an iterative biochemical fractionation process to identify, purify, and characterize antiviral compounds produced by marine microbes. We isolated a compound from Streptomyces kaviengensis, a novel actinomycetes isolated from marine sediments obtained off the coast of New Ireland, Papua New Guinea, which we identified as antimycin A1a. This compound displays potent activity against western equine encephalitis virus in cultured cells with half-maximal inhibitory concentrations of less than 4 nM and a selectivity index of greater than 550. Our efforts also revealed that several antimycin A analogues display antiviral activity, and mechanism of action studies confirmed that these Streptomyces-derived secondary metabolites function by inhibiting the cellular mitochondrial electron transport chain, thereby suppressing de novo pyrimidine synthesis. Furthermore, we found that antimycin A functions as a broad spectrum agent with activity against a wide range of RNA viruses in cultured cells, including members of the Togaviridae, Flaviviridae, Bunyaviridae, Picornaviridae, and Paramyxoviridae families. Finally, we demonstrate that antimycin A reduces central nervous system viral titers, improves clinical disease severity, and enhances survival in mice given a lethal challenge with western equine encephalitis virus. Our results provide conclusive validation for using natural product resources derived from marine microbes as source material for antiviral drug discovery, and they indicate that host mitochondrial electron transport is a viable target for the continued development of broadly active antiviral compounds.


Subject(s)
Actinobacteria/chemistry , Antiviral Agents/pharmacology , Geologic Sediments/microbiology , Animals , Antimycin A/chemistry , Antimycin A/pharmacology , Antimycin A/therapeutic use , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , Biological Products/chemistry , Biological Products/isolation & purification , Biological Products/pharmacology , Cell Line , Central Nervous System/drug effects , Central Nervous System/pathology , Central Nervous System/virology , Chemical Fractionation , Electron Transport/drug effects , Encephalitis Viruses/drug effects , Encephalitis, Arbovirus/drug therapy , Encephalitis, Arbovirus/pathology , Encephalitis, Arbovirus/virology , High-Throughput Screening Assays , Humans , Mice , Mitochondria/drug effects , Mitochondria/metabolism , RNA, Viral/metabolism , Reference Standards , Reproducibility of Results , Streptomyces/chemistry , Survival Analysis , Transcription, Genetic/drug effects
11.
Org Lett ; 12(15): 3536-9, 2010 Aug 06.
Article in English | MEDLINE | ID: mdl-20614868

ABSTRACT

A novel thiazole-containing cyclic peptide, aeruginazole A (1), was isolated from the cyanobacterium Microcystis sp. strain (IL-323), which was collected from a water reservoir near Kfar-Yehoshua, Valley of Armageddon, Israel. The planar structure of aeruginazole A was established using homonuclear and inverse-heteronuclear 2D NMR techniques, as well as high-resolution mass spectrometry. The absolute configuration of the asymmetric centers was determined using Marfey's method. Aeruginazole A potently inhibited Bacillus subtilis.


Subject(s)
Anti-Bacterial Agents/isolation & purification , Microcystis/chemistry , Peptides, Cyclic/isolation & purification , Thiazoles/isolation & purification , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacillus subtilis/drug effects , Israel , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Thiazoles/chemistry , Thiazoles/pharmacology
12.
J Nat Prod ; 70(2): 196-201, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17315959

ABSTRACT

Bioassay-guided fractionation of the 7:3 MeOH/water extract of a cultured cyanobacterium strain identified as Fischerella sp. yielded nine isonitrile-containing alkaloids. Three of the compounds, ambiguine H isonitrile (1), ambiguine I isonitrile (2), and ambiguine J isonitrile (3), are new, while the other six, 12-epi-hapalindole H, ambiguine A isonitrile, ambiguine B isonitrile, ambiguine D isonitrile, ambiguine E isonitrile, and ambiguine F isonitrile, have been previously isolated from Fischerella ambigua. The structures of the compounds were determined by 1D and 2D NMR techniques and mass spectrometric data. Ambiguine H isonirile and ambiguine I isonirile possess antibacterial and antimycotic activity.


Subject(s)
Antifungal Agents , Cyanobacteria/chemistry , Indole Alkaloids/isolation & purification , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Antifungal Agents/pharmacology , Indole Alkaloids/chemistry , Indole Alkaloids/pharmacology , Israel , Microbial Sensitivity Tests , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular
SELECTION OF CITATIONS
SEARCH DETAIL
...