Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Appl Sci (Basel) ; 12(8): 1-23, 2022 Apr 11.
Article in English | MEDLINE | ID: mdl-37850155

ABSTRACT

The application of stabilization technologies to a radiologically contaminated surface has the potential for reducing the spread of contamination and, as a result, decreasing worker exposure to radiation. Three stabilization technologies, calcium chloride (CaCl2), flame retardant Phos-Chek® MVP-Fx, and Soil2O™ were investigated to evaluate their ability to reduce the resuspension and tracking of radiological contamination during response activities such as vehicle and foot traffic. Concrete pavers, asphalt pavers, and sandy soil walking paths were used as test surfaces, along with simulated fallout material (SFM) tagged with radiostrontium (Sr-85) applied as the contaminant. Radiological activities were measured using gamma spectrometry before and after simulated vehicle operation and foot traffic experiments, conducted with each stabilization technology and without application as a nonstabilized control. These measurements were acquired separately for each combination of surface and vehicle/foot traffic experiment. The resulting data describes the extent of SFM removed from each surface onto the tires or boots, the extent of SFM transferred to adjacent surfaces, and the residual SFM remaining on the tires or boots after each experiment. The type of surface and response worker actions influenced the stabilization results. For instance, when walked over, less than 2% of particles were removed from nonstabilized concrete, 4% from asphalt, and 40% of the particles were removed from the sand surface. By contrast, for vehicle experiments, ~40% of particles were again removed from the sand, but 7% and 15% from concrete and asphalt, respectively. In most cases, the stabilization technologies did provide improved stabilization. The improvement was related to the type of surface, worker actions, and stabilizer; a statistical analysis of these variables is presented. Overall, the results suggest an ability to utilize these technologies during the planning and implementation of response activities involving foot and vehicle traffic. In addition, resuspension of aerosolizable range SFM was monitored during walking path foot traffic experiments, and all stabilizing agents decreased the measured radioactivity, with the Soil2O™ decrease being 3 fold, whereas the CaCl2 and Phos-Chek MVP-Fx surfaces generated no detectable radioactivity. Overall, these results suggest that the stabilization technologies decrease the availability of particles respirable by response workers under these conditions.

2.
Appl Sci (Basel) ; 12(5): 1-13, 2022 Feb 26.
Article in English | MEDLINE | ID: mdl-37701659

ABSTRACT

An accidental radiological release or the operation of a radiological dispersal device (RDD) may lead to the contamination of a large area. Such scenarios may lead to health and safety risks associated with the resuspension of contaminated particles due to aeolian (wind-induced) soil erosion and tracking activities. Stabilization technologies limiting resuspension are therefore needed to avoid spreading contamination and to reduce exposures to first responders and decontamination workers. Resuspension testing was performed on soils from two sites of the Negev Desert following treatment with three different stabilization materials: calcium chloride, magnesium chloride, and saltwater from the Dead Sea in Israel. Two and six weeks post-treatment, resuspension was examined by inducing wind-driven resuspension and quantitatively measuring particle emission from the soils using a boundary-layer wind tunnel system. Experiments were conducted under typical wind velocities of this region. Treating the soils reduced resuspension fluxes of particulate matter < 10 µm (PM10) and saltating (sand-sized) particles to around background levels. Resuspension suppression efficiencies from the treated soils were a minimum of 94% for all three stabilizers, and the Dead Sea salt solution yielded 100% efficiency over all wind velocities tested. The impact of the salt solutions (brine) was directly related to the salt treatment rather than the wetting of the soils. Stabilization was still observed six weeks post-treatment, supporting that this technique can effectively limit resuspension for a prolonged duration, allowing sufficient time for decision making and management of further actions.

3.
PLoS One ; 13(3): e0194630, 2018.
Article in English | MEDLINE | ID: mdl-29547634

ABSTRACT

INTRODUCTION: Detection and monitoring of circulating tumor DNA (ctDNA) is rapidly becoming a diagnostic, prognostic and predictive tool in cancer patient care. A growing number of gene targets have been identified as diagnostic or actionable, requiring the development of reliable technology that provides analysis of multiple genes in parallel. We have developed the InVision™ liquid biopsy platform which utilizes enhanced TAm-Seq™ (eTAm-Seq™) technology, an amplicon-based next generation sequencing method for the identification of clinically-relevant somatic alterations at low frequency in ctDNA across a panel of 35 cancer-related genes. MATERIALS AND METHODS: We present analytical validation of the eTAm-Seq technology across two laboratories to determine the reproducibility of mutation identification. We assess the quantitative performance of eTAm-Seq technology for analysis of single nucleotide variants in clinically-relevant genes as compared to digital PCR (dPCR), using both established DNA standards and novel full-process control material. RESULTS: The assay detected mutant alleles down to 0.02% AF, with high per-base specificity of 99.9997%. Across two laboratories, analysis of samples with optimal amount of DNA detected 94% mutations at 0.25%-0.33% allele fraction (AF), with 90% of mutations detected for samples with lower amounts of input DNA. CONCLUSIONS: These studies demonstrate that eTAm-Seq technology is a robust and reproducible technology for the identification and quantification of somatic mutations in circulating tumor DNA, and support its use in clinical applications for precision medicine.


Subject(s)
Biomarkers, Tumor/analysis , Cell-Free Nucleic Acids/analysis , DNA Mutational Analysis/methods , Mutation , Neoplasms/diagnosis , Neoplastic Cells, Circulating/pathology , Adult , Alleles , Biomarkers, Tumor/genetics , Circulating Tumor DNA/analysis , DNA, Neoplasm/genetics , Female , High-Throughput Nucleotide Sequencing/methods , Humans , Liquid Biopsy/methods , Male , Neoplastic Cells, Circulating/chemistry , Polymerase Chain Reaction , Reproducibility of Results , Sensitivity and Specificity
4.
Biophys J ; 112(7): 1366-1373, 2017 Apr 11.
Article in English | MEDLINE | ID: mdl-28402879

ABSTRACT

The Achaete-scute homolog 1 (Ascl1) protein regulates a large subset of genes that leads neuronal progenitor cells to distinctive differentiation pathways during human brain development. Although it is well known that Ascl1 binds DNA as a homo- or heterodimer via its basic helix-loop-helix (bHLH) motif, little is known about the conformational sampling properties of the DNA-free full-length protein, and in particular about the bHLH domain-flanking N- and C-terminal segments, which are predicted to be highly disordered in solution. The structural heterogeneity, low solubility, and high aggregation propensity of Ascl1 in aqueous buffer solutions make high-resolution studies of this protein a challenging task. Here, we have adopted a fragment-based strategy that allowed us to obtain high-quality NMR data providing, to our knowledge, the first comprehensive high-resolution information on the structural propensities and conformational dynamics of Ascl1. The emerging picture is that of an overall extended and highly dynamic polypeptide chain comprising three helical segments and lacking persistent long-range interactions. We also show that the C-terminal helix of the bHLH domain is involved in intermolecular interactions, even in the absence of DNA. Our results contribute to a better understanding of the mechanisms of action that govern the regulation of proneural transcription factors.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/chemistry , Magnetic Resonance Spectroscopy , Amino Acid Sequence , Basic Helix-Loop-Helix Transcription Factors/metabolism , DNA/metabolism , Humans , Protein Domains
5.
J Immunol ; 198(1): 239-248, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27852743

ABSTRACT

Application of dendritic cells (DCs) to prime responses to tumor Ags provides a promising approach to immunotherapy. However, only a limited number of DCs can be manufactured from adult precursors. In contrast, pluripotent embryonic stem (ES) cells represent an inexhaustible source for DC production, although it remains a major challenge to steer directional differentiation because ES cell-derived cells are typically immature with impaired functional capacity. Consistent with this notion, we found that mouse ES cell-derived DCs (ES-DCs) represented less mature cells compared with bone marrow-derived DCs. This finding prompted us to compare the gene expression profile of the ES cell- and adult progenitor-derived, GM-CSF-instructed, nonconventional DC subsets. We quantified the mRNA level of 17 DC-specific transcription factors and observed that 3 transcriptional regulators (Irf4, Spi-B, and Runx3) showed lower expression in ES-DCs than in bone marrow-derived DCs. In light of this altered gene expression, we probed the effects of these transcription factors in developing mouse ES-DCs with an isogenic expression screen. Our analysis revealed that forced expression of Irf4 repressed ES-DC development, whereas, in contrast, Runx3 improved the ES-DC maturation capacity. Moreover, LPS-treated and Runx3-activated ES-DCs exhibited enhanced T cell activation and migratory potential. In summary, we found that ex vivo-generated ES-DCs had a compromised maturation ability and immunogenicity. However, ectopic expression of Runx3 enhances cytokine-driven ES-DC development and acts as an instructive tool for the generation of mature DCs with enhanced immunogenicity from pluripotent stem cells.


Subject(s)
Cell Differentiation/physiology , Core Binding Factor Alpha 3 Subunit/biosynthesis , Dendritic Cells/cytology , Ectopic Gene Expression/physiology , Embryonic Stem Cells/cytology , Animals , Blotting, Western , Cell Separation , Cells, Cultured , Core Binding Factor Alpha 3 Subunit/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Embryonic Stem Cells/immunology , Embryonic Stem Cells/metabolism , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Lymphocyte Activation/immunology , Male , Mice , Mice, Inbred C57BL , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/immunology , Pluripotent Stem Cells/metabolism , Real-Time Polymerase Chain Reaction , Transcriptome
6.
BMC Cancer ; 15 Suppl 1: S1, 2015.
Article in English | MEDLINE | ID: mdl-25708542

ABSTRACT

The cancer stem cell (CSC) hypothesis suggests that only a subpopulation of cells within a tumour is responsible for the initiation and progression of neoplasia. The original and best evidence for the existence of CSCs came from advances in the field of haematological malignancies. Thus far, putative CSCs have been isolated from various solid and non-solid tumours and shown to possess self-renewal, differentiation, and cancer regeneration properties. Although research in the field is progressing extremely fast, proof of concept for the CSC hypothesis is still lacking and key questions remain unanswered, e.g. the cell of origin for these cells. Nevertheless, it is undisputed that neoplastic transformation is associated with genetic and epigenetic alterations of normal cells, and a better understanding of these complex processes is of utmost importance for developing new anti-cancer therapies. In the present review, we discuss the CSC hypothesis with special emphasis on age-associated alterations that govern carcinogenesis, at least in some types of tumours. We present evidence from the scientific literature for age-related genetic and epigenetic alterations leading to cancer and discuss the main challenges in the field.


Subject(s)
Aging/physiology , Neoplasms/genetics , Neoplastic Stem Cells/physiology , Animals , Carcinogenesis , Epigenesis, Genetic , Humans , Neoplasms/pathology
7.
Biogerontology ; 14(6): 573-90, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24085521

ABSTRACT

Aging is accompanied by reduced regenerative capacity of all tissues and organs and dysfunction of adult stem cells. Notably, these age-related alterations contribute to distinct pathophysiological characteristics depending on the tissue of origin and function and thus require special attention in a type by type manner. In this paper, we review the current understanding of the mechanisms leading to tissue-specific adult stem cell dysfunction and reduced regenerative capacity with age. A comprehensive investigation of the hematopoietic, the neural, the mesenchymal, and the skeletal stem cells in age-related research highlights that distinct mechanisms are associated with the different types of tissue stem cells. The link between age-related stem cell dysfunction and human pathologies is discussed along with the challenges and the future perspectives in stem cell-based therapies in age-related diseases.


Subject(s)
Adult Stem Cells/pathology , Aging/pathology , Cell Proliferation , Age Factors , Animals , Cell Differentiation , Hematopoietic Stem Cells/pathology , Humans , Mesenchymal Stem Cells/pathology , Myoblasts, Skeletal/pathology , Neural Stem Cells/pathology , Neurodegenerative Diseases/pathology , Stem Cell Niche
8.
Biogerontology ; 14(6): 591-602, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23963527

ABSTRACT

The discovery of induced pluripotent stem cells (iPSCs) has the potential to revolutionize the field of regenerative medicine. In the past few years, iPSCs have been the subject of intensive research towards their application in disease modeling and drug screening. In the future, these cells may be applied in cell therapy to replace or regenerate tissues by autologous transplantation. However, two major hurdles need to be resolved in order to reach the later goal: the low reprogramming efficiency and the safety risks, such as the integration of foreign DNA into the genome of the cells and the tumor formation potential arising from transplantation of residual undifferentiated cells. Recently, aging emerged as one of the barriers that accounts, at least in part, for the low reprogramming efficiency of bona fide iPSCs. Here, we review the molecular pathways linking aging and reprogramming along with the unanswered questions in the field. We discuss whether reprogramming rejuvenates the molecular and cellular features associated with age, and present the recent advances with iPSC-based models, contributing to our understanding of physiological and premature aging.


Subject(s)
Aging, Premature/therapy , Aging/genetics , Cellular Reprogramming , Genetic Therapy/methods , Induced Pluripotent Stem Cells/pathology , Nuclear Transfer Techniques , Regenerative Medicine/methods , Age Factors , Aging/metabolism , Aging/pathology , Aging, Premature/genetics , Aging, Premature/metabolism , Aging, Premature/pathology , Aging, Premature/physiopathology , Animals , Cellular Senescence , Gene Expression Regulation, Developmental , Humans , Induced Pluripotent Stem Cells/metabolism
9.
Exp Cell Res ; 318(7): 789-99, 2012 Apr 15.
Article in English | MEDLINE | ID: mdl-22305966

ABSTRACT

The PI3K-AKT pathway is frequently activated in human cancers, including breast cancer, and its activation appears to be critical for tumor maintenance. Some malignant cells are dependent on activated AKT for their survival; tumors exhibiting elevated AKT activity show sensitivity to its inhibition, providing an Achilles heel for their treatment. Here we show that the PKCη isoform is a negative regulator of the AKT signaling pathway. The IGF-I induced phosphorylation on Ser473 of AKT was inhibited by the PKCη-induced expression in MCF-7 breast adenocarcinoma cancer cells. This was further confirmed in shRNA PKCη-knocked-down MCF-7 cells, demonstrating elevated phosphorylation on AKT Ser473. While PKCη exhibited negative regulation on AKT phosphorylation it did not alter the IGF-I induced ERK phosphorylation. However, it enhanced ERK phosphorylation when stimulated by PDGF. Moreover, its effects on IGF-I/AKT and PDGF/ERK pathways were in correlation with cell proliferation. We further show that both PKCη and IGF-I confer protection against UV-induced apoptosis and cell death having additive effects. Although the protective effect of IGF-I involved activation of AKT, it was not affected by PKCη expression, suggesting that PKCη acts through a different route to increase cell survival. Hence, our studies show that PKCη provides negative control on AKT pathway leading to reduced cell proliferation, and further suggest that its presence/absence in breast cancer cells will affect cell death, which could be of therapeutic value.


Subject(s)
Adenocarcinoma/metabolism , Breast Neoplasms/metabolism , Insulin-Like Growth Factor I/metabolism , Oncogene Protein v-akt/metabolism , Protein Kinase C/metabolism , Adenocarcinoma/drug therapy , Breast Neoplasms/drug therapy , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Female , Gene Knockdown Techniques , Humans , Isoenzymes/metabolism , MAP Kinase Signaling System/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Platelet-Derived Growth Factor/pharmacology , Protein Kinase C/genetics , RNA, Small Interfering/metabolism , Serine/metabolism , Signal Transduction/drug effects , Ultraviolet Rays
10.
Biochem Biophys Res Commun ; 412(2): 313-7, 2011 Aug 26.
Article in English | MEDLINE | ID: mdl-21820409

ABSTRACT

The nuclear factor κB (NF-κB) family of transcription factors participates in the regulation of genes involved in innate- and adaptive-immune responses, cell death and inflammation. The involvement of the Protein kinase C (PKC) family in the regulation of NF-κB in inflammation and immune-related signaling has been extensively studied. However, not much is known on the role of PKC in NF-κB regulation in response to DNA damage. Here we demonstrate for the first time that PKC-eta (PKCη) regulates NF-κB upstream signaling by activating the IκB kinase (IKK) and the degradation of IκB. Furthermore, PKCη enhances the nuclear translocation and transactivation of NF-κB under non-stressed conditions and in response to the anticancer drug camptothecin. We and others have previously shown that PKCη confers protection against DNA damage-induced apoptosis. Our present study suggests that PKCη is involved in NF-κB signaling leading to drug resistance.


Subject(s)
DNA Damage , Drug Resistance, Neoplasm , NF-kappa B/agonists , Protein Kinase C/metabolism , Active Transport, Cell Nucleus , Antineoplastic Agents, Phytogenic/pharmacology , Camptothecin/pharmacology , Cell Line, Tumor , Cell Nucleus/metabolism , Humans , NF-kappa B/metabolism , Transcription Factor RelA/metabolism
11.
Mol Cell Biol ; 29(22): 6140-8, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19797084

ABSTRACT

Protein kinase C (PKC) represents a family of serine/threonine kinases that play a central role in the regulation of cell growth, differentiation, and transformation. Posttranslational control of the PKC isoforms and their activation have been extensively studied; however, not much is known about their translational regulation. Here we report that the expression of one of the PKC isoforms, PKCeta, is regulated at the translational level both under normal growth conditions and during stress imposed by amino acid starvation, the latter causing a marked increase in its protein levels. The 5' untranslated region (5' UTR) of PKCeta is unusually long and GC rich, characteristic of many oncogenes and growth regulatory genes. We have identified two conserved upstream open reading frames (uORFs) in its 5' UTR and show their effect in suppressing the expression of PKCeta in MCF-7 growing cells. While the two uORFs function as repressive elements that maintain low basal levels of PKCeta in growing cells, they are required for its enhanced expression upon amino acid starvation. We show that the translational regulation during stress involves leaky scanning and is dependent on eIF-2alpha phosphorylation by GCN2. Our work further suggests that translational regulation could provide an additional level for controlling the expression of PKC family members, being more common than currently recognized.


Subject(s)
Open Reading Frames/genetics , Protein Biosynthesis , Protein Kinase C/metabolism , 5' Untranslated Regions/genetics , Amino Acids/deficiency , Animals , Base Sequence , Cell Line, Tumor , Cell Proliferation , Codon/genetics , Conserved Sequence , Enzyme Induction , Humans , Mice , Molecular Sequence Data , Polyribosomes/metabolism , Protein Kinase C/biosynthesis , Protein Kinase C/genetics , Protein Serine-Threonine Kinases/deficiency , Protein Serine-Threonine Kinases/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...