Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Sci Rep ; 13(1): 5538, 2023 04 04.
Article in English | MEDLINE | ID: mdl-37016058

ABSTRACT

The identification of the mammalian species based on faecal sediments in modern and ancient environments is the aim of the research of archaeologists, forensic scientists and ecologists. Here, we set up and validated an optimized gas chromatography-mass spectrometry (GC-MS) method, characterized by a time-saving sample preparation protocol, for the simultaneous analysis of faecal biomarkers (6 sterols/stanols and 5 bile acids) in 14 soil samples from the archaeological site of "Le Colombare di Negrar" in northern Italy. Although the archaeological sediment samples examined are numerically exiguous, a comparative reading of our faecal biomarkers findings with new studies on faunal materials collected in the same stratigraphic detail during recent excavation campaigns will allow to better clarify the economic interest of the animal species farmed in the Colombare site (such as bovines, goats, sheep and pigs) and to shed light on the management of breeding. Together with archaeozoological and archaeobotanical analyses, the investigation of faecal biomarkers can increase our knowledge of how ancient local communities exploited natural resources and may allow us to deduce what their impact on the landscape was.


Subject(s)
Soil , Sterols , Cattle , Animals , Swine , Sheep , Gas Chromatography-Mass Spectrometry/methods , Soil/chemistry , Sterols/analysis , Bile Acids and Salts , Mammals , Biomarkers/analysis , Goats
2.
Article in English | MEDLINE | ID: mdl-36445181

ABSTRACT

Introduction: Hexahydrocannabinols (HHCs), referred to as (9R)-HHC and (9S)-HHC diastereoisomers, are poorly studied cannabinoids naturally found in small concentrations in the pollen and the seeds of the hemp plants. Aim: In this study, for the first time, we describe the finding of (9R)-HHC and (9S)-HHC in two commercialized hemp derived products. Methods: The achievement of reference standards by semisynthetic or isolation approach allows us to develop and validate a gas chromatography mass spectrometry method for the identification and quantification of HHCs in hemp-derived resin. Results: The two analyzed samples showed percentage of 42.5 and 41.5 for (9R)-HHC and of 23.6 and 23.6 for (9S)-HHC. Conclusions: Despite the lack of in-depth studies about HHCs activity, potency, toxicity, and safety, these cannabinoids are emerging on the light-cannabis (hemp) market probably because legislations still do not clearly regulate them. Since analytical assay for hemp-derived products usually include only Δ9-THC, THC-A, CBD, and CBD-A, a thorough investigation could be carried out to reveal the possible addition of "new" compounds that might be a matter of safety.

3.
Forensic Sci Int ; 333: 111237, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35228140

ABSTRACT

Cannabis products rich in cannabidiol (CBD) and low in Δ9-tetrahydrocannabinol (THC) (e.g., light cannabis in Italy) are becoming widely popular and available on the market as replacements for THC preparations and tobacco for their recreational and/or therapeutic benefits. In this paper, which aims to establish alternative discrimination parameters between hair samples from CBD-rich and THC-prevalent cannabis users, cannabinoid concentrations, such as THC, CBD, 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THC-COOH) and 11-hydroxy-Δ9-tetrahydrocannabinol (11-OH-THC) were quantified in 127 hair samples by a GC-MS/MS technique. Initially, this analysis was able to discriminate two cohorts: cohort 1 (individuals with THC values ≥ 0.05 ng/mg and THC-COOH ≥ 0.2 pg/mg or THC-positive users, n = 60) and cohort 2 (individuals with THC values ranging between 0.01 and 0.05 ng/mg and THC-COOH or 11-OH-THC ≥ LOQs, n = 67). The evaluation of CBD/THC ratio in cohort 2 identified two further sub-cohorts 2a (CBD/THC<<1 or ~ 1, THC-prevalent cannabis users) and 2b (CBD/THC>>1, suspected CBD-rich and THC-low cannabis users). The latter showed unusual profiles for THC metabolites, in particular for 11-OH-THC. Statistical evaluation of the data of cohort 1, cohort 2a and cohort 2b yielded significant differences in CBD/THC and THC/11-OH-THC. Based on the analysis of 337 seized cannabis samples and 630 CBD-rich/light cannabis samples by GC-FID and GC-MS, respectively, we also evaluated statistical differences in the CBD/THC ratio between biological (hair) and plant-derived samples. Considering the legal implications of a positive result, the obtained findings could be relevant for the interpretation of cannabinoid concentrations in hair. Further studies are necessary to elucidate the reason behind the unusual metabolic ratios.


Subject(s)
Cannabidiol , Cannabinoids , Cannabis , Cannabinoids/analysis , Dronabinol/analysis , Hair/chemistry , Humans , Tandem Mass Spectrometry
4.
J Anal Toxicol ; 45(3): 269-276, 2021 Mar 12.
Article in English | MEDLINE | ID: mdl-32860709

ABSTRACT

Over the years, several studies have shown that many factors are likely to affect the results of forensic hair analyses and complicate their interpretation. Among these factors, one of the major drawbacks in hair analysis is the affectability of deposited xenobiotics by cosmetic treatments, which could be eventually used to adulterate the sample. It is well known that some cosmetic treatments containing hydrogen peroxide, such as permanent dyeing or bleaching, lead to the formation of 1-H-pyrrole-2,3,5-tricarboxylic acid (PTCA), a melanin degradation product. Considering that PTCA is also an endogenous compound, spontaneously formed by natural oxidation of melanin, its only detection in hair is not enough to confirm a cosmetic oxidative treatment. For this reason, the aim of the present work was to develop and validate a reliable liquid-liquid extraction method in ultra-high-performance liquid chromatographic-tandem mass spectrometry for the determination of endogenous PTCA in hair from a wide multi-ethnic population (African, Arab, Asian-Pacific, Caucasian, Hispanic and Indian). According to previous studies, untreated hair samples showed a PTCA content of 8.54 ± 5.72 ng/mg (mean ± standard deviation [SD]), ranging between 0.44 and 23.7 ng/mg; after in vitro cosmetic bleaching, PTCA increased to 16.8 ± 6.95 ng/mg (range: 4.16-32.3 ng/mg). Comparing baseline PTCA levels of each subgroup with the others, we could not observe any statistically significant difference, except for Caucasians (P < 0.05), wherein the concentrations were lower. Further studies and a wider sampling are necessary to elucidate the role of PTCA as diagnostic marker of cosmetic hair treatment in forensic field.


Subject(s)
Hair , Tricarboxylic Acids , Pilot Projects , Pyrroles
5.
J Anal Toxicol ; 45(5): 513-520, 2021 May 14.
Article in English | MEDLINE | ID: mdl-33027522

ABSTRACT

Hair analysis is an important and reliable resource for the assessment of alcohol or drug abstinence in both clinical and forensic toxicology. Recently, it has been demonstrated that hair oxidative cosmetic treatments lead to the reduction in incorporated xenobiotics in hair, such as ethyl glucuronide (EtG), a marker of alcohol abuse, and the formation of 1-H-pyrrole-2,3,5-tricarboxylic acid (PTCA), a degradation product of melanin. The aim of the present study was to investigate PTCA trends in a large number of samples in order to evaluate the reliability of this biomarker in recognizing previous cosmetic treatment in forensic analyses. Therefore, a single-step extraction followed by an high-performance liquid chromatography--tandem mass spectrometry (HPLC--MS-MS) method was established and validated for the simultaneous determination of EtG and PTCA. This method was applied to 1,219 scalp hair samples from two groups, namely self-reported untreated and in vivo treated hair, exhibiting a concentration range of 6.7 to 440.0 pg/mg for EtG (mean 26.8 pg/mg, median 14.6 pg/mg) and 0.009 to 49.8 ng/mg for PTCA (mean 0.66 ng/mg, median 0.02 ng/mg). The PTCA content was significantly different among the two experimental groups, with the in vivo treated group showing significantly higher levels of PTCA than the untreated group. Finally, an in vitro bleaching was performed and the results confirmed that a strong hair oxidative treatment may negatively affect EtG test results (false negative), whereas the mean PTCA content increased showing statistically significant differences between untreated and in vitro oxidative treated samples. The present study suggests that the determination of PTCA in routine hair analysis procedure could be useful in order to discover previous cosmetic treatment including oxidation.


Subject(s)
Alcoholism , Tricarboxylic Acids , Alcohol Drinking , Biomarkers/metabolism , Glucuronates , Humans , Oxidative Stress , Pyrroles , Reproducibility of Results , Self Report , Substance Abuse Detection
6.
Biomolecules ; 10(9)2020 09 09.
Article in English | MEDLINE | ID: mdl-32917006

ABSTRACT

Changes in lipid metabolism are involved in several pathological conditions, such as cancer. Among lipids, eicosanoids are potent inflammatory mediators, synthesized from polyunsaturated fatty acids (PUFAs), which coexist with other lipid-derived ones, including endocannabinoids (ECs) and N-acylethanolamides (NAEs). In this work, a bioanalytical assay for 12 PUFAs/eicosanoids and 20 ECs/NAEs in cell culture medium and human biofluids was validated over a linear range of 0.1-2.5 ng/mL. A fast pretreatment method consisting of protein precipitation with acetonitrile followed by a double step liquid-liquid extraction was developed. The final extracts were injected onto a Kinetex ultra-high-performance liquid chromatography (UHPLC) XB-C18 column with a gradient elution of 0.1% formic acid in water and methanol/acetonitrile (5:1; v/v) mobile phase. Chromatographic separation was followed by detection with a triple-quadrupole mass spectrometer operating both in positive and negative ion-mode. A full validation was carried out in a small amount of cell culture medium and then applied to osteosarcoma cell-derived products. To the best of our knowledge, this is the first lipid profiling of bone tumor cell lines (SaOS-2 and MG-63) and their secretome. Our method was also partially validated in other biological matrices, such as serum and urine, ensuring its broad applicability as a powerful tool for lipidomic translational research.


Subject(s)
Chromatography, High Pressure Liquid/methods , Lipidomics/methods , Lipids/analysis , Osteosarcoma/chemistry , Osteosarcoma/metabolism , Tandem Mass Spectrometry/methods , Cell Line, Tumor , Humans , Reproducibility of Results , Serum/chemistry , Urine/chemistry
7.
Cancers (Basel) ; 12(4)2020 Apr 03.
Article in English | MEDLINE | ID: mdl-32260109

ABSTRACT

Due to the involvement of the endocannabinoid system (ECS) in cancer onset and progression and the less studied connection between ECS and bladder cancer, here an evaluation of the ECS modifications associated with bladder cancer is reported. Urine samples were collected from healthy volunteers and patients with bladder cancer at different grades. Endocannabinoids (ECs) and N-acylethanolamides (NAEs) were quantified by HPLC-MS/MS and results normalized for creatinine content. An increase in the urine concentrations of four ECs and NAEs analyzed was observed with a statistically significant increase in the arachidonoylethanolamide (AEA) and stearoylethanoamide (SEA) associated with bladder cancer. Receiver operating characteristic curves built with AEA and SEA data allowed the selection of 160 pg/mL for SEA (area under the curve (AUC) = 0.91, Selectivity (SE) 94%, Specificity (SP) 45%) and 8 pg/mL for AEA (AUC = 0.85, SE 94%, SP 61%) as the best cut-off values. Moreover, data from bladder cancer samples at different grades were derived from The Cancer Genome Atlas, and the expressions of thirteen different components of the "endocannabinoidome" were analyzed. Statistical analysis highlights significant variations in the expression of three enzymes involved in EC and NAE turnover in bladder cancer.

8.
Forensic Sci Int ; 304: 109951, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31563559

ABSTRACT

Hair analysis for the assessment of cannabis active use from passive consumption may be failed when performed by the sole detection of compounds present in plant material as well as in cannabis smoke like Δ-9-tetrahydrocannabinol (THC), cannabidiol (CBD), and cannabinol (CBN). For this reason, the determination of 11-nor-9-carboxy-Δ-9-tetrahydrocannabinol (THC-COOH) has been proposed by the Society of Hair Testing (SoHT) in order to prove active cannabis consumption. The identification of THC-COOH in hair will continue to be complicated by its acidic nature and the critical low concentration due to the preferential incorporation of basic compounds into hair shaft. Alternatively, 11-OH-THC may be considered as a complementary marker for THC administration. Our recent study reported an accurate validated procedure for THC, CBD, CBN and 11-OH-THC in hair, based on a GC/MS-MS method in electron ionization mode. However, unlike THC-COOH, a cut-off level for 11-OH-THC in hair has not been fixed yet. For this reason, the aim of this study is to propose a concentration value for 11-OH-THC in hair analysis in order to discriminate between chronic use and external contamination. Receiver operating characteristics (ROC) analysis was applied for cut-off evaluation after 11-OH-THC quantification in a pool of 672 THC-positive hair samples. Results have shown a concentration range between 0.01-5.34 ng/mg for THC (mean 0.34 ng/mg, median 0.12), 0.00-19.2 pg/mg for THC-COOH (mean 0.72 pg/mg, median 0.19 pg/mg) and 0.01-13.33 ng/mg for 11-OH-THC (mean 1.09 ng/mg, median 0.51 ng/mg) for scalp hair and between 0.03-6.32 ng/mg for THC (mean 0.82 ng/mg, median 0.30), 0.00-42.1 pg/mg for THC-COOH (mean 2.70 pg/mg, median 1.08 pg/mg) and 0.00-7.88 ng/mg for 11-OH-THC (mean 1.70 ng/mg, median 0.89 ng/mg) for body hair. Considering these experimental data collected in our laboratory, we propose a cut-off level of 0.5 for scalp and body hair, as indicative of cannabis active consumption. The ROC curve AUCs for 11-OH-THC were 0.873 and 0.884 in 590 scalp hair and 82 body hair samples, respectively. The comparison of the results for THC-COOH (control method) and 11-OH-THC (test method) was also made by means of the Cohen's kappa statistics providing a good agreement according to both Landis & Koch and Fleiss scales. Additionally, we suggest that the detection of both THC-COOH and 11-OH-THC should be mandatory in order to prove active intake and exclude false positive results from external contamination.


Subject(s)
Dronabinol/analogs & derivatives , Forensic Toxicology/standards , Hair/chemistry , Hallucinogens/analysis , Marijuana Abuse/diagnosis , Biomarkers/analysis , Dronabinol/analysis , Gas Chromatography-Mass Spectrometry , Humans , Reference Values
10.
J Pharm Biomed Anal ; 172: 167-174, 2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31048142

ABSTRACT

Over the last decade, hair analysis has become a routine procedure in most forensic laboratories and, complementary to blood and urine, hair is a unique biological matrix which gives the opportunity to establish a temporal consumption profile. Despite hair is widely used to identify drug use, environmental contamination continues to represent a challenging factor of this procedure, especially for cocaine (COC). In the last few years several strategies have been proposed in order to distinguish between actual use and external contamination, however the commonly detected COC metabolites probably are insufficient for demonstrating cocaine use through hair testing. Thus, the aim of this study is to develop an ultra high performance liquid cromatography - tandem mass spectrometry (UHPLC-MS/MS) method able to detect and quantify hydroxy-COC metabolites, as specific markers of COC abuse, in hair samples from COC consumers, thus enabling unambiguous evidence of COC consumption. At the beginning, since no commercial reference materials were available, COC-positive hair samples were tested using parent ion scan-based analysis to extract hydroxy COC metabolites target ions. Once identified, the reference materials were synthesized by our analytical laboratory allowing the development of the first UHPLC-MS/MS validated method to quantify p- and m-isomers of hydroxy COC, as well as hydroxy benzoylecgonine (BE) and hydroxy norcocaine (NCOC). The method was successfully applied to a large number of COC-positive hair samples and introduced into a routine procedure for testing drug ingestion in order to evaluate for the first-time hydroxy metabolites of COC ranges in hair and their correlation with COC and BE.


Subject(s)
Cocaine-Related Disorders/diagnosis , Cocaine/analogs & derivatives , Cocaine/analysis , Hair/chemistry , Substance Abuse Detection/methods , Chromatography, High Pressure Liquid , Cocaine/metabolism , False Positive Reactions , Female , Forensic Toxicology/methods , Humans , Ions/analysis , Male , Tandem Mass Spectrometry
11.
J Org Chem ; 84(9): 5460-5470, 2019 05 03.
Article in English | MEDLINE | ID: mdl-30892893

ABSTRACT

Assigning the correct configuration at C2 in sialosides is a standing problem because of the absence of an anomeric hydrogen. All different empirical rules that have been proposed over the years lack general applicability. In particular, the correct configuration of several 3,4-unsaturated derivatives of N-acetylneuraminic acid (Neu5Ac), which have been recently shown to be novel sialidase/neuraminidase inhibitors, could only be tentatively assigned by similarity with the reported 3,4-unsaturated 2O-methyl sialosides. In this work, we overcome this problem as we devised a rapid synthetic method to unequivocally resolve the anomeric configuration of the 3,4-unsaturated Neu5Ac derivatives through the synthesis of the corresponding unreported unsaturated 1,7-lactones. Moreover, we discovered a diagnostic 13C nuclear magnetic resonance signal that allows the formulation of a new empirical rule for the direct assignment of the C2 stereochemistry of these molecules, even when only one of the two C2 epimers is available.


Subject(s)
Lactones/chemistry , N-Acetylneuraminic Acid/chemistry , Stereoisomerism
12.
Molecules ; 24(5)2019 Mar 11.
Article in English | MEDLINE | ID: mdl-30862103

ABSTRACT

Olaparib, an orally active inhibitor of poly(ADP-ribose)polymerase(PARP), is the drug of choice in the treatment of gBRCA1/2+ metastatic breast cancers. Unfortunately, Olaparib is poorly soluble with low bioavailability and tumor accumulation; nano-delivery could be a good choice to overcome these disadvantages. Here, a rapid and robust HPLC-ESI⁻MS/MS method for the quantification of Olaparib in ferritin nano-carriers led to the development of cells compartments, different tissues, plasma and urines and were validated to assess the effects of nano-delivery on cell compartment distribution of the drug. This method allows the quantification of Olaparib within the linear range of 0.1⁻10ng/mL in cells culture medium and cell cytoplasm, of 0.5⁻10ng/mL in nuclei, of 0.5⁻100ng/mL in plasma and urine and of 10⁻500ng/mL in tissue samples (kidney and liver). The limit of quantification was found to be 1.54 ng/mL for liver, 2.87 ng/mL for kidney, and lower than 0.48 ng/mL for all matrices. The method has been applied to quantify Ola encapsulated in ferritin-nano-carriers during the nano-drug development. The application of the method to human BRCA-mutated cell model to quantify the Olaparib distribution after incubation of free or ferritin-encapsulated Olaparib is also reported. This sensitive method allows the quantification of low concentrations of Olaparib released from nano-carriers in different cell compartments, leading to the determination of the drug release and kinetic profile of an essential parameter to validate nano-carriers.


Subject(s)
Chromatography, Liquid , Drug Delivery Systems , Nanotechnology , Phthalazines/administration & dosage , Phthalazines/pharmacokinetics , Piperazines/administration & dosage , Piperazines/pharmacokinetics , Tandem Mass Spectrometry , Cell Line , Drug Stability , Humans , Reproducibility of Results , Sensitivity and Specificity , Workflow
13.
J Chromatogr A ; 1589: 1-9, 2019 Mar 29.
Article in English | MEDLINE | ID: mdl-30598290

ABSTRACT

BACKGROUND: Phosphatidylethanols (PEths) are currently under investigation as highly sensitive and specific direct biomarkers of long-term alcohol abuse. PEths belong to a group of aberrant phospholipids formed in erythrocyte membranes in presence of ethanol by the catalytic action of the enzyme phospholipase D on phosphatidylcholine. Compared to other alcohol biomarkers, a higher sensitivity (94.5-100%) and specificity (100%) characterizes PEth species. METHOD: Prior to detection, an important practical aspect in the work-flow of PEths analysis is the sample preparation step. To date, traditional techniques such as liquid-liquid extraction (LLE) and solid phase extraction (SPE) require multiple steps to remove blood interferences. Due to the simplicity of use and the possibility of automation, sample filtration is also a widespread technique in biomedical laboratories. In this work, a reliable sample preparation method based on an automated filtration with Phree™ Phospholipid Removal Plates (Phenomenex, California, USA) was developed to extract PEths from human whole blood. Surface characteristics of Phospholipids Removal material allow phospholipids retention on the filter and a suitable PEths recovery after elution. The blood samples were added with internal standard (IS) and purified in acetonitrile (1 mL). After centrifugation, supernatants were applied to the Phospholipids Removal Plates in an automated workstation. After washing, the phospholipids retained on the filter were eluted with 1-mL 2-propanol 1% ammonia. PEth 16:0/18:1, PEth 16:0/16:0 and PEth 18:1/18:1 were extracted using the proposed method and detected by LC-MS/MS operated in electron spray ionization (ESI). The detection of all compounds was based on multiple reaction monitoring (MRM) transitions. This method was validated for the quantitative profiling of PEth molecular species in human blood collected from heavy and social drinkers. RESULTS: The method was validated according to Food and Drug Administration (FDA) guidelines. Linearity was observed in the 25-1250 (PEth 16:0/18:1) and 5-250 (PEth 16:0/16:0 and PEth 18:1/18:1) ng/mL range with a correlation coefficient (r²) between 0.997 and 0.999 for all three compounds. Moreover, the nominal concentrations of non-zero calibrators were ±15%. Variation coefficient (%CV) was < 10% for all the analytes, while lowest limit of quantitation (LLOQ) was found to be 1.25 ng/mL for PEth 16:0/18:1, 0.50 ng/mL for PEth 16:0/16:0 and 0.50 ng/mL for PEth 18:1/18:1. Intra- and inter-day precision and accuracy were always lower than 14% and 11%, respectively. Analytical recovery was higher than 68.8% for all analytes. Sample stability at 4 °C and -20 °C showed a concentration drop lower than 20% up to 4 weeks. Extracts were stable for 7 days in the autosampler and 30 days at -20 °C and 4 °C in a closed vial. The procedure was successfully applied to blood samples collected from heavy drinkers (n = 8), social drinkers (n = 5), and teetotalers (n = 7). CONCLUSIONS: Due to the simplicity of application and the possibility of automation, sample filtration is well suited for a clinical and forensic laboratory. To monitor alcohol consumption, an analytical method based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) with novel and automated sample preparation was developed and validated for the simultaneous quantification of PEth 16:0/18:1, PEth 16:0/16:0 and PEth 18:1/18:1 in whole blood samples, characterized by a fast sample preparation and lower pre-analysis costs than other extraction procedures.


Subject(s)
Chromatography, High Pressure Liquid/methods , Ethanol/analysis , Glycerophospholipids/blood , Tandem Mass Spectrometry/methods , Adult , Alcohol Drinking , Alcoholism/blood , Automation , Biomarkers/blood , Calibration , California , Case-Control Studies , Ethanol/standards , Female , Glycerophospholipids/chemistry , Humans , Limit of Detection , Male , Middle Aged , Reference Standards , Spectrometry, Mass, Electrospray Ionization
15.
J Pharm Biomed Anal ; 155: 1-6, 2018 Jun 05.
Article in English | MEDLINE | ID: mdl-29602054

ABSTRACT

THC, CBD, CBN, THC-COOH and 11-OH-THC are the most popular markers of cannabis consumption and abuse. The use of this drug is a serious social problem worldwide. In this study, a method based on gas chromatography-tandem mass spectrometry (GC-MS/MS) operated in electron ionization (EI) with simple and rapid liquid-liquid extraction (LLE) and derivatization was developed and validated for the simultaneous determination of THC, CBD, CBN and 11-OH-THC in hair samples. The detection of all compounds was based on multiple reaction monitoring (MRM) transitions. The most important advantage of this method is the single-step, quick, easy and effective sample extraction procedure for THC, CBD, CBN and 11-OH-THC. The method showed a good linearity with a correlation coefficient (r2) between 0.997 and 0.999 for all substances. The variation coefficient (%CV) was <5% for THC, 11-OH-THC and CBD and <13% for CBN. The limit of detection (LOD) was 0.03 pg/mg for 11-OH-THC and it ranged from 0.3 to 1.4 pg/mg for THC, CBD and CBN. The limit of quantification was 0.1 pg/mg for 11-OH-THC and it ranged from 0.9 to 4.7 pg/mg for THC, CBD and CBN. Analytical recovery was higher than 88% for 11-OH-THC and it ranged between 68 and 97% for THC, CBD and CBN. Intra- and inter-assay precision and accuracy were always lower than 9-14% and 5-9%, respectively. In parallel, we have quantified the THC-COOH level, following the methods previously set-up by us. The whole procedure was successfully applied to more than 200 different hair samples from cannabis consumers, disclosing the presence of 11-OH-THC in a range between 0.2 pg/mg and 27 pg/mg, and the presence of THC-COOH in a range between 0.05 pg/mg and 42.05 pg/mg. These data provided a good start towards the use of 11-THC-OH as alternative hair biomarker of cannabis consumption.


Subject(s)
Cannabinoids/chemistry , Dronabinol/chemistry , Hair/chemistry , Cannabis/chemistry , Gas Chromatography-Mass Spectrometry/methods , Humans , Limit of Detection , Liquid-Liquid Extraction/methods , Substance Abuse Detection/methods , Tandem Mass Spectrometry/methods
16.
Scand J Gastroenterol ; 52(10): 1133-1139, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28631495

ABSTRACT

BACKGROUND: The endocannabinoid system plays a substantial role in analgesia. AIM: To analyze N-arachidonoylethanolamine (AEA), N-oleoylethanolamine (OEA), linoleoyl ethanolamide (LEA), α-linoleoyl ethanolamine (α-LNEA), N-palmitoylethanolamine (PEA) and N-stearoyl ethanolamine (SEA) in two groups of patients having chronic pancreatic diseases. PATIENTS AND METHODS: Twenty-six patients with chronic pancreatitis, 26 patients with pancreatic ductal adenocarcinoma and 36 healthy subjects were studied. The visual analogic scale (VAS) was used for assessing pain immediately before the venipuncture to obtain blood in all subjects. Six endocannabinoids were measured in serum of the patients enrolled. RESULTS: Only OEA, LEA and PEA serum levels were significantly higher in patients with pain as compared to those without. Using the cutoff values, the sensitivity and specificity of the various endocannabinoids in evaluating pain in patients with chronic pancreatitis and in those with pancreatic ductal adenocarcinoma were: 44.2% and 95.6% for AEA, 83.7% and 73.3% for LEA, 88.4% and 91.1% for LNEA, 81.4% and 82.2% for OEA, 81.4% and 88.9% for PEA, 86.0% and 88.9% for SEA, respectively. CONCLUSION: Endocannabinoids are not useful in assessing pain in patients with chronic pancreatic diseases and they cannot replace a simple method such as VAS for assessing the pain and its intensity.


Subject(s)
Abdominal Pain/blood , Cancer Pain/blood , Carcinoma, Pancreatic Ductal/blood , Endocannabinoids/blood , Pancreatic Neoplasms/blood , Pancreatitis, Chronic/blood , Abdominal Pain/etiology , Adolescent , Adult , Aged , Aged, 80 and over , Amides , Arachidonic Acids , Cancer Pain/etiology , Carcinoma, Pancreatic Ductal/complications , Case-Control Studies , Ethanolamines/blood , Female , Humans , Linoleic Acids/blood , Male , Middle Aged , Oleic Acids/blood , Pain Measurement , Palmitic Acids/blood , Pancreatic Neoplasms/complications , Pancreatitis, Chronic/complications , Polyunsaturated Alkamides/blood , Predictive Value of Tests , ROC Curve , Stearic Acids/blood , Young Adult
17.
Biomed Chromatogr ; 31(4)2017 Apr.
Article in English | MEDLINE | ID: mdl-27714830

ABSTRACT

This study describes the development of simple, rapid and sensitive liquid chromatography tandem mass spectrometry method for the simultaneous analysis of doxorubicin and its major metabolite, doxorubicinol, in mouse plasma, urine and tissues. The calibration curves were linear over the range 5-250 ng/mL for doxorubicin and 1.25-25 ng/mL for doxorubicinol in plasma and tumor, over the range 25-500 ng/mL for doxorubicin and 1.25-25 ng/mL for doxorubicinol in liver and kidney, and over the range 25-1000 ng/mL for doxorubicin and doxorubicinol in urine. The study was validated, using quality control samples prepared in all different matrices, for accuracy, precision, linearity, selectivity, lower limit of quantification and recovery in accordance with the US Food & Drug Administration guidelines. The method was successfully applied in determining the pharmaco-distribution of doxorubicin and doxorubicinol after intravenously administration in tumor-bearing mice of drug, free or nano-formulated in ferritin nanoparticles or in liposomes. Obtained results demonstrate an effective different distribution and doxorubicin protection against metabolism linked to nano-formulation. This method, thanks to its validation in plasma and urine, could be a powerful tool for pharmaceutical research and therapeutic drug monitoring, which is a clinical approach currently used in the optimization of oncologic treatments.


Subject(s)
Chromatography, High Pressure Liquid/methods , Doxorubicin/analogs & derivatives , Doxorubicin/analysis , Doxorubicin/pharmacokinetics , Tandem Mass Spectrometry/methods , Administration, Intravenous , Animals , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/analysis , Antibiotics, Antineoplastic/pharmacokinetics , Doxorubicin/administration & dosage , Female , Humans , Limit of Detection , Liposomes/administration & dosage , Liposomes/chemistry , Mice, Inbred BALB C , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Reproducibility of Results , Tissue Distribution , Xenograft Model Antitumor Assays
18.
Article in English | MEDLINE | ID: mdl-24705535

ABSTRACT

We describe and validate a sensitive UHPLC-ESI-QTOF-MS method for the simultaneous quantification of seven endocannabinoids and non-endocannabinoids related N-acylethanolamides: N-arachidonoylethanolamide, N-palmitoylethanolamide, N-stearoylethanolamide, N-oleoylethanolamide, N-linoleoylethanolamide, N-α-linolenoylethanolamide and N-eicosapentaenoylethanolamide in several bio-matrices for the purpose of research and clinical application. We examined effects of different liquid-liquid and solid phase extraction on the recovery of endocannabinoids and N-acylethanolamides. Protein precipitation with cooled acetone and extraction with acetonitrile (1% v/v formic acid) using OASIS HLB cartridge gave better results. Separation was performed on a Waters Acquity UPLC HSST3 column using a 9min elution gradient coupled with high resolution mass spectrometry (QTOF/MS). The high sensitivity of the developed method allow its application on sample with low volumes or low levels of endocannabinoids and N-acylethanolamides and make the method suitable for routine measurement in human bio-matrices, such as plasma, serum (500µL), urine (1mL) and tissues (10-30mg). Its application in clinical research could contribute to unravel pathophysiological roles of these family of lipid mediators and disclose novel diagnostic and prognostic markers.


Subject(s)
Arachidonic Acids/blood , Arachidonic Acids/urine , Chromatography, High Pressure Liquid/methods , Endocannabinoids/blood , Endocannabinoids/urine , Polyunsaturated Alkamides/blood , Polyunsaturated Alkamides/urine , Spectrometry, Mass, Electrospray Ionization/methods , Amides , Animals , Arachidonic Acids/analysis , Endocannabinoids/analysis , Ethanolamines/analysis , Ethanolamines/blood , Ethanolamines/urine , Humans , Limit of Detection , Linoleic Acids/analysis , Linoleic Acids/blood , Linoleic Acids/urine , Male , Palmitic Acids/analysis , Palmitic Acids/blood , Palmitic Acids/urine , Polyunsaturated Alkamides/analysis , Rats , Stearic Acids/analysis , Stearic Acids/blood , Stearic Acids/urine , Tandem Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...