Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Chem Inf Model ; 60(5): 2605-2613, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32202786

ABSTRACT

The combination of high-end cryogenic transmission electron microscopes (cryo-EM), direct electron detectors, and advanced image algorithms allows researchers to obtain the 3D structures of much smaller macromolecules than years ago. However, there are still major challenges for the single-particle cryo-EM method to achieve routine structure determinations for macromolecules much smaller than 100 kDa, which are the majority of all plant and animal proteins. These challenges include sample characteristics such as sample heterogeneity, beam damage, ice layer thickness, stability, and quality, as well as hardware limitations such as detector performance, beam, and phase plate quality. Here, single particle data sets were simulated for samples that were ideal in terms of homogeneity, distribution, and stability, but with realistic parameters for ice layer, dose, detector performance, and beam characteristics. Reference data were calculated for human apo-ferritin using identical parameters reported for an experimental data set downloaded from EMPIAR. Processing of the simulated data set resulted in a value of 1.86 Šfrom 20 214 particles, similar to a 2 Šdensity map obtained from 29 224 particles selected from real micrographs. Simulated data sets were then generated for a 14 kDa protein, hen egg white lysozyme (HEWL), with and without an ideal phase plate (PP). Whereas we could not obtain a high-resolution 3D reconstruction of HEWL for the data set without PP, the one with PP resulted in a 2.78 Šresolution density map from 225 751 particles. Our simulator and simulations could help in pushing the size limits of cryo-EM.


Subject(s)
Egg White , Muramidase , Algorithms , Animals , Cryoelectron Microscopy , Humans , Macromolecular Substances
2.
J Struct Biol ; 181(3): 283-90, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23261400

ABSTRACT

Correlative light and electron microscopy is an increasingly popular technique to study complex biological systems at various levels of resolution. Fluorescence microscopy can be employed to scan large areas to localize regions of interest which are then analyzed by electron microscopy to obtain morphological and structural information from a selected field of view at nm-scale resolution. Previously, an integrated approach to room temperature correlative microscopy was described. Combined use of light and electron microscopy within one instrument greatly simplifies sample handling, avoids cumbersome experimental overheads, simplifies navigation between the two modalities, and improves the success rate of image correlation. Here, an integrated approach for correlative microscopy under cryogenic conditions is presented. Its advantages over the room temperature approach include safeguarding the native hydrated state of the biological specimen, preservation of the fluorescence signal without risk of quenching due to heavy atom stains, and reduced photo bleaching. The potential of cryo integrated light and electron microscopy is demonstrated for the detection of viable bacteria, the study of in vitro polymerized microtubules, the localization of mitochondria in mouse embryonic fibroblasts, and for a search into virus-induced intracellular membrane modifications within mammalian cells.


Subject(s)
Cryoelectron Microscopy/methods , Freezing , Microscopy, Electron/methods , Specimen Handling/methods , Acinetobacter baumannii , Animals , Chlorocebus aethiops , Fluorescence , Microscopy, Fluorescence , Microtubules , Vero Cells
3.
Acta Crystallogr D Biol Crystallogr ; 66(Pt 1): 97-109, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20057054

ABSTRACT

Charge-coupled devices (CCD) are nowadays commonly utilized in transmission electron microscopy (TEM) for applications in life sciences. Direct access to digitized images has revolutionized the use of electron microscopy, sparking developments such as automated collection of tomographic data, focal series, random conical tilt pairs and ultralarge single-particle data sets. Nevertheless, for ultrahigh-resolution work photographic plates are often still preferred. In the ideal case, the quality of the recorded image of a vitrified biological sample would solely be determined by the counting statistics of the limited electron dose the sample can withstand before beam-induced alterations dominate. Unfortunately, the image is degraded by the non-ideal point-spread function of the detector, as a result of a scintillator coupled by fibre optics to a CCD, and the addition of several inherent noise components. Different detector manufacturers provide different types of figures of merit when advertising the quality of their detector. It is hard for most laboratories to verify whether all of the anticipated specifications are met. In this report, a set of algorithms is presented to characterize on-axis slow-scan large-area CCD-based TEM detectors. These tools have been added to a publicly available image-processing toolbox for MATLAB. Three in-house CCD cameras were carefully characterized, yielding, among others, statistics for hot and bad pixels, the modulation transfer function, the conversion factor, the effective gain and the detective quantum efficiency. These statistics will aid data-collection strategy programs and provide prior information for quantitative imaging. The relative performance of the characterized detectors is discussed and a comparison is made with similar detectors that are used in the field of X-ray crystallography.


Subject(s)
Gamma Cameras/statistics & numerical data , Image Processing, Computer-Assisted/instrumentation , Microscopy, Electron, Transmission/instrumentation , Software , Algorithms , Automation , Crystallography, X-Ray , Data Collection , Humans , Image Enhancement , Image Processing, Computer-Assisted/methods
4.
Top Curr Chem ; 286: 259-78, 2009.
Article in English | MEDLINE | ID: mdl-23563615

ABSTRACT

Microtubules (MTs) are dynamic structures of the eukaryotic cytoskeleton that, during cell division, form the mitotic spindle. Perturbing them leads to mitotic arrest and ultimately to cell death. Consistently, MTs and their building block, αß tubulin, are one of the best characterized targets in anti-cancer chemotherapy. Drugs that interfere with MTs either stabilize or destabilize them. The latter class is the subject of this review. These ligands bind to the colchicine site or to the vinca domain, two distinct sites located at a distance from each other on tubulin. Nevertheless the effects of both classes of ligands share a common theme, they prevent the formation of MT specific contacts, therefore triggering their disassembly.

5.
Acta Crystallogr D Biol Crystallogr ; 62(Pt 10): 1162-9, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17001093

ABSTRACT

An automatic data-collection system has been implemented and installed on seven insertion-device beamlines and a bending-magnet beamline at the ESRF (European Synchrotron Radiation Facility) as part of the SPINE (Structural Proteomics In Europe) development of an automated structure-determination pipeline. The system allows remote interaction with beamline-control systems and automatic sample mounting, alignment, characterization, data collection and processing. Reports of all actions taken are available for inspection via database modules and web services.


Subject(s)
Genes/genetics , Synchrotrons/statistics & numerical data , Data Collection/methods , Information Management , Molecular Structure , Quality Control , Software
6.
Acta Crystallogr D Biol Crystallogr ; 62(Pt 10): 1251-9, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17001102

ABSTRACT

A standard sample holder and vial for cryocooled macromolecular crystals has been defined for use with robotic sample changers. This SPINE standard sample holder is a modified version, with added features and specifications, of sample holders in common use. In particular, the SPINE standard meets the precision required for automatic sample exchange and includes a cap that is identified by a two-dimensional datamatrix code as well as an optional vial. At the ESRF, the sample holder standard is in use with the EMBL/ESRF/BM14 robotic sample changer (SC3) which is installed on eight beamlines. The SC3 can hold up to 50 crystals stored in five baskets. A datamatrix reader in the SC3 ensures safe management of the sample flow and facilitates fully automatic screening and characterization of samples. Tools for handling and transporting 50 samples in a dry shipping dewar have been developed. In addition to the SC3, the SPINE sample holder is currently compatible with a number of other robotic sample changers.


Subject(s)
Crystallography/instrumentation , Automation , Crystallography/standards , Electronics , Magnetics , Reference Standards , Robotics , Software , Synchrotrons
7.
Acta Crystallogr D Biol Crystallogr ; 62(Pt 1): 65-71, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16369095

ABSTRACT

Undulator radiation is the X-ray source of choice for modern macromolecular crystallography beamlines. Here, the basic properties of undulator sources are described and it is indicated why they make such good X-ray sources for macromolecular crystallography. Collection of excellent data from these beamlines is not always straightforward; therefore, a number of rules are postulated for undulator data collection and guidelines are offered which will help to ensure a satisfactory experiment.


Subject(s)
Crystallography, X-Ray , Data Collection/instrumentation , Magnetics/instrumentation , Proteins/chemistry , Synchrotrons/instrumentation , Crystallization , Data Collection/methods , Data Collection/statistics & numerical data
8.
J Synchrotron Radiat ; 12(Pt 3): 310-7, 2005 May.
Article in English | MEDLINE | ID: mdl-15840916

ABSTRACT

The study of temperature-dependent physical changes in flash-cooled macromolecular crystals is pertinent to cryocrystallography and related issues such as crystal annealing, X-ray radiation damage and kinetic crystallography. In this context, the unit-cell volume of flash-cooled trigonal and orthorhombic trypsin crystals has been monitored upon warming from 100 to 200 K and subsequent re-cooling to 100 K. Crystals of both forms were obtained under the same crystallization conditions, yet they differ in solvent content and channel size. An abrupt non-reversible unit-cell volume decrease is observed at 185 K in orthorhombic and at 195 K in trigonal crystals as the temperature is increased; this result is consistent with ultra-viscous solvent leaving the crystals. Concomitant appearance of ice rings in the diffraction patterns suggests that the transported solvent forms crystalline ice. These results demonstrate that solvent in flash-cooled protein crystals is liquid-like near its crystallization temperature, as has been proposed, yet controversially discussed, for the case of pure water. The use of mineral oil prevents the unit-cell volume decrease in trigonal but not in orthorhombic crystals. The observation of liquid-like solvent has implications in the development of annealing protocols and points a way to the rational design of temperature-controlled crystallographic studies that aim either at studying specific radiation damage or at trapping enzymatic intermediate states.


Subject(s)
Crystallography/methods , Freezing , Trypsin/chemistry , Trypsin/radiation effects , Animals , Cattle , Cryopreservation , Crystallization , Protein Conformation/radiation effects
9.
Protein Sci ; 10(10): 1953-61, 2001 Oct.
Article in English | MEDLINE | ID: mdl-11567086

ABSTRACT

The nature of the dynamical coupling between a protein and its surrounding solvent is an important, yet open issue. Here we used temperature-dependent protein crystallography to study structural alterations that arise in the enzyme acetylcholinesterase upon X-ray irradiation at two temperatures: below and above the glass transition of the crystal solvent. A buried disulfide bond, a buried cysteine, and solvent exposed methionine residues show drastically increased radiation damage at 155 K, in comparison to 100 K. Additionally, the irradiation-induced unit cell volume increase is linear at 100 K, but not at 155 K, which is attributed to the increased solvent mobility at 155 K. Most importantly, we observed conformational changes in the catalytic triad at the active site at 155 K but not at 100 K. These changes lead to an inactive catalytic triad conformation and represent, therefore, the observation of radiation-inactivation of an enzyme at the atomic level. Our results show that at 155 K, the protein has acquired--at least locally--sufficient conformational flexibility to adapt to irradiation-induced alterations in the conformational energy landscape. The increased protein flexibility may be a direct consequence of the solvent glass transition, which expresses as dynamical changes in the enzyme's environment. Our results reveal the importance of protein and solvent dynamics in specific radiation damage to biological macromolecules, which in turn can serve as a tool to study protein flexibility and its relation to changes in a protein's environment.


Subject(s)
Acetylcholinesterase/chemistry , Disulfides/chemistry , Solvents/chemistry , Acetylcholinesterase/radiation effects , Animals , Binding Sites , Crystallization , Crystallography, X-Ray , Glass/chemistry , Models, Molecular , Protein Conformation/radiation effects , Temperature , Torpedo
10.
Structure ; 8(3): 315-28, 2000 Mar 15.
Article in English | MEDLINE | ID: mdl-10745008

ABSTRACT

BACKGROUND: Exposure of biomacromolecules to ionising radiation results in damage that is initiated by free radicals and progresses through a variety of mechanisms. A widely used technique to study the three-dimensional structures of biomacromolecules is crystallography, which makes use of ionising X-rays. It is crucial to know to what extent structures determined using this technique might be biased by the inherent radiation damage. RESULTS: The consequences of radiation damage have been investigated for three dissimilar proteins. Similar results were obtained for each protein, atomic B factors increase, unit-cell volumes increase, protein molecules undergo slight rotations and translations, disulphide bonds break and decarboxylation of acidic residues occurs. All of these effects introduce non-isomorphism. The absorbed dose in these experiments can be reached during routine data collection at undulator beamlines of third generation synchrotron sources. CONCLUSIONS: X-rays can leave a 'fingerprint' on structures, even at cryogenic temperatures. Serious non-isomorphism can be introduced, thus hampering multiple isomorphous replacement (MIR) and multiwavelength anomalous dispersion (MAD) phasing methods. Specific structural changes can occur before the traditional measures of radiation damage have signalled it. Care must be taken when assigning structural significance to features that might easily be radiation-damage-induced changes. It is proposed that the electron-affinic disulphide bond traps electrons that migrate over the backbone of the protein, and that the sidechains of glutamic acid and aspartic acid donate electrons to nearby electron holes and become decarboxylated successively. The different disulphide bonds in each protein show a clear order of susceptibility, which might well relate to their intrinsic stability.


Subject(s)
Proteins/radiation effects , X-Rays , Fourier Analysis , Proteins/chemistry
11.
Proc Natl Acad Sci U S A ; 97(2): 623-8, 2000 Jan 18.
Article in English | MEDLINE | ID: mdl-10639129

ABSTRACT

Radiation damage is an inherent problem in x-ray crystallography. It usually is presumed to be nonspecific and manifested as a gradual decay in the overall quality of data obtained for a given crystal as data collection proceeds. Based on third-generation synchrotron x-ray data, collected at cryogenic temperatures, we show for the enzymes Torpedo californica acetylcholinesterase and hen egg white lysozyme that synchrotron radiation also can cause highly specific damage. Disulfide bridges break, and carboxyl groups of acidic residues lose their definition. Highly exposed carboxyls, and those in the active site of both enzymes, appear particularly susceptible. The catalytic triad residue, His-440, in acetylcholinesterase, also appears to be much more sensitive to radiation damage than other histidine residues. Our findings have direct practical implications for routine x-ray data collection at high-energy synchrotron sources. Furthermore, they provide a direct approach for studying the radiation chemistry of proteins and nucleic acids at a detailed, structural level and also may yield information concerning putative "weak links" in a given biological macromolecule, which may be of structural and functional significance.


Subject(s)
Proteins/chemistry , Proteins/radiation effects , Acetylcholinesterase/chemistry , Acetylcholinesterase/radiation effects , Animals , Chickens , Crystallization , Crystallography, X-Ray , Disulfides/chemistry , Disulfides/radiation effects , Egg White , Muramidase/chemistry , Muramidase/radiation effects , Protein Conformation/radiation effects , Radiation Dosage , Synchrotrons , Torpedo
12.
EMBO J ; 18(19): 5166-74, 1999 Oct 01.
Article in English | MEDLINE | ID: mdl-10508150

ABSTRACT

Human beta(2)-glycoprotein I is a heavily glycosylated five-domain plasma membrane-adhesion protein, which has been implicated in blood coagulation and clearance of apoptotic bodies from the circulation. It is also the key antigen in the autoimmune disease anti-phospholipid syndrome. The crystal structure of beta(2)-glycoprotein I isolated from human plasma reveals an elongated fish-hook-like arrangement of the globular short consensus repeat domains. Half of the C-terminal fifth domain deviates strongly from the standard fold, as observed in domains one to four. This aberrant half forms a specific phospholipid-binding site. A large patch of 14 positively charged residues provides electrostatic interactions with anionic phospholipid headgroups and an exposed membrane-insertion loop yields specificity for lipid layers. The observed spatial arrangement of the five domains suggests a functional partitioning of protein adhesion and membrane adhesion over the N- and C-terminal domains, respectively, separated by glycosylated bridging domains. Coordinates are in the Protein Data Bank (accession No. 1QUB).


Subject(s)
Glycoproteins/metabolism , Phospholipids/metabolism , Antibodies, Antiphospholipid/metabolism , Crystallography, X-Ray , Glycoproteins/chemistry , Humans , Models, Molecular , Oligosaccharides/chemistry , Oligosaccharides/metabolism , Protein Binding , Protein Conformation , beta 2-Glycoprotein I
13.
Acta Crystallogr D Biol Crystallogr ; 54(Pt 6 Pt 2): 1359-66, 1998 Nov 01.
Article in English | MEDLINE | ID: mdl-10089512

ABSTRACT

Acetylcholinesterase (AChE) is one of nature's fastest enzymes, despite the fact that its three-dimensional structure reveals its active site to be deeply sequestered within the molecule. This raises questions with respect to traffic of substrate to, and products from, the active site, which may be investigated by time-resolved crystallography. In order to address one aspect of the feasibility of performing time-resolved studies on AChE, a data set has been collected using the Laue technique on a trigonal crystal of Torpedo californica AChE soaked with the reversible inhibitor edrophonium, using a total X-ray exposure time of 24 ms. Electron-density maps obtained from the Laue data, which are of surprisingly good quality compared with similar maps from monochromatic data, show essentially the same features. They clearly reveal the bound ligand, as well as a structural change in the conformation of the active-site Ser200 induced upon binding.


Subject(s)
Acetylcholinesterase/chemistry , Crystallography, X-Ray/methods , Protein Conformation , Acetylcholine/metabolism , Acetylcholinesterase/metabolism , Binding Sites , Humans , Hydrolysis , Kinetics , Models, Molecular , Time Factors
15.
Protein Sci ; 5(4): 672-9, 1996 Apr.
Article in English | MEDLINE | ID: mdl-8845756

ABSTRACT

A soluble, monomeric form of acetylcholinesterase from mouse (mAChE), truncated at its carboxyl-terminal end, was generated from a cDNA encoding the glycophospholipid-linked form of the mouse enzyme by insertion of an early stop codon at position 549. Insertion of the cDNA behind a cytomegalovirus promoter and selection by aminoglycoside resistance in transfected HEK cells yielded clones secreting large quantities of mAChE into the medium. The enzyme sediments as a soluble monomer at 4.8 S. High levels of expression coupled with a one-step purification by affinity chromatography have allowed us to undertake a crystallographic study of the fasciculin-mAChE complex. Complexes of two distinct fasciculins, Fas1-mAChE and Fas2-mAChE, were formed prior to the crystallization and were characterized thoroughly. Single hexagonal crystals, up to 0.6 mm x 0.5 mm x 0.5 mm, grew spontaneously from ammonium sulfate solutions buffered in the pH 7.0 range. They were found by electrophoretic migration to consist entirely of the complex and diffracted to 2.8 A resolution. Analysis of initial X-ray data collected on Fas2-mAChE crystals identified the space group as P6(1)22 or P6(5)22 with unit cell dimensions a = b = 75.5 A, c = 556 A, giving a Vm value of 3.1 A3/Da (or 60% of solvent), consistent with a single molecule of Fas2-AChE complex (72 kDa) per asymmetric unit. The complex Fas1-mAChE crystallizes in the same space group with identical cell dimensions.


Subject(s)
Acetylcholinesterase/chemistry , Cholinesterase Inhibitors/chemistry , Elapid Venoms/chemistry , Acetylcholinesterase/genetics , Acetylcholinesterase/isolation & purification , Acetylcholinesterase/metabolism , Amino Acid Sequence , Animals , Base Sequence , Cell Line , Centrifugation, Density Gradient , Cholinesterase Inhibitors/metabolism , Crystallography, X-Ray , DNA, Complementary/metabolism , Elapid Venoms/metabolism , Electrophoresis, Polyacrylamide Gel , Mice , Molecular Sequence Data , Protein Conformation
16.
Structure ; 3(12): 1355-66, 1995 Dec 15.
Article in English | MEDLINE | ID: mdl-8747462

ABSTRACT

BACKGROUND: Fasciculin (FAS), a 61-residue polypeptide purified from mamba venom, is a three-fingered toxin which is a powerful reversible inhibitor of acetylcholinesterase (AChE). Solution of the three-dimensional structure of the AChE/FAS complex would provide the first structure of a three-fingered toxin complexed with its target. RESULTS: The structure of a complex between Torpedo californica AChE and fasciculin-II (FAS-II), from the venom of the green mamba (Dendroaspis angusticeps) was solved by molecular replacement techniques, and refined at 3.0 A resolution to an R-factor of 0.231. The structure reveals a stoichiometric complex with one FAS molecule bound to each AChE subunit. The AChE and FAS conformations in the complex are very similar to those in their isolated structures. FAS is bound at the 'peripheral' anionic site of AChE, sealing the narrow gorge leading to the active site, with the dipole moments of the two molecules roughly aligned. The high affinity of FAS for AChE is due to a remarkable surface complementarity, involving a large contact area (approximately 2000 A2) and many residues either unique to FAS or rare in other three-fingered toxins. The first loop, or finger, of FAS reaches down the outer surface of the thin aspect of the gorge. The second loop inserts into the gorge, with an unusual stacking interaction between Met33 in FAS and Trp279 in AChE. The third loop points away from the gorge, but the C-terminal residue makes contact with the enzyme. CONCLUSIONS: Two conserved aromatic residues in the AChE peripheral anionic site make important contacts with FAS. The absence of these residues from chicken and insect AChEs and from butyrylcholinesterase explains the very large reduction in the affinity of these enzymes for FAS. Several basic residues in FAS make important contacts with AChE. The complementarity between FAS and AChE is unusual, inasmuch as it involves a number of charged residues, but lacks any intermolecular salt linkages.


Subject(s)
Acetylcholinesterase/chemistry , Cholinesterase Inhibitors/chemistry , Elapid Venoms/chemistry , Models, Molecular , Protein Conformation , Acetylcholinesterase/genetics , Acetylcholinesterase/metabolism , Amino Acid Sequence , Animals , Chemical Phenomena , Chemistry, Physical , Cholinesterase Inhibitors/metabolism , Crystallography, X-Ray , Elapid Venoms/metabolism , Molecular Sequence Data , Mutagenesis, Site-Directed , Protein Binding , Structure-Activity Relationship , Torpedo/genetics , Torpedo/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL