Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
1.
Biochim Biophys Acta Bioenerg ; 1865(3): 149045, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38614453

ABSTRACT

Cytochrome bo3 quinol oxidase belongs to the heme­copper-oxidoreductase (HCO) superfamily, which is part of the respiratory chain and essential for cell survival. While the reaction mechanism of cyt bo3 has been studied extensively over the last decades, specific details about its substrate binding and product release have remained unelucidated due to the lack of structural information. Here, we report a 2.8 Å cryo-electron microscopy structure of cyt bo3 from Escherichia coli assembled in peptidiscs. Our structural model shows a conformation for amino acids 1-41 of subunit I different from all previously published structures while the remaining parts of this enzyme are similar. Our new conformation shows a "U-shape" assembly in contrast to the transmembrane helix, named "TM0", in other reported structural models. However, TM0 blocks ubiquinone-8 (reaction product) release, suggesting that other cyt bo3 conformations should exist. Our structural model presents experimental evidence for an "open" conformation to facilitate substrate/product exchange. This work helps further understand the reaction cycle of this oxidase, which could be a benefit for potential drug/antibiotic design for health science.

2.
ACS Nano ; 17(16): 15836-15846, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37531407

ABSTRACT

Cryogenic electron microscopy can provide high-resolution reconstructions of macromolecules embedded in a thin layer of ice from which atomic models can be built de novo. However, the interaction between the ionizing electron beam and the sample results in beam-induced motion and image distortion, which limit the attainable resolutions. Sample charging is one contributing factor of beam-induced motions and image distortions, which is normally alleviated by including part of the supporting conducting film within the beam-exposed region. However, routine data collection schemes avoid strategies whereby the beam is not in contact with the supporting film, whose rationale is not fully understood. Here we characterize electrostatic charging of vitreous samples, both in imaging and in diffraction mode. We mitigate sample charging by depositing a single layer of conductive graphene on top of regular EM grids. We obtained high-resolution single-particle analysis (SPA) reconstructions at 2 Å when the electron beam only irradiates the middle of the hole on graphene-coated grids, using data collection schemes that previously failed to produce sub 3 Å reconstructions without the graphene layer. We also observe that the SPA data obtained with the graphene-coated grids exhibit a higher b factor and reduced particle movement compared to data obtained without the graphene layer. This mitigation of charging could have broad implications for various EM techniques, including SPA and cryotomography, and for the study of radiation damage and the development of future sample carriers. Furthermore, it may facilitate the exploration of more dose-efficient, scanning transmission EM based SPA techniques.

3.
Nat Methods ; 20(4): 499-511, 2023 04.
Article in English | MEDLINE | ID: mdl-36914814

ABSTRACT

Cryogenic electron microscopy and data processing enable the determination of structures of isolated macromolecules to near-atomic resolution. However, these data do not provide structural information in the cellular environment where macromolecules perform their native functions, and vital molecular interactions can be lost during the isolation process. Cryogenic focused ion beam (FIB) fabrication generates thin lamellae of cellular samples and tissues, enabling structural studies on the near-native cellular interior and its surroundings by cryogenic electron tomography (cryo-ET). Cellular cryo-ET benefits from the technological developments in electron microscopes, detectors and data processing, and more in situ structures are being obtained and at increasingly higher resolution. In this Review, we discuss recent studies employing cryo-ET on FIB-generated lamellae and the technological developments in ultrarapid sample freezing, FIB fabrication of lamellae, tomography, data processing and correlative light and electron microscopy that have enabled these studies. Finally, we explore the future of cryo-ET in terms of both methods development and biological application.


Subject(s)
Electron Microscope Tomography , Electron Microscope Tomography/methods , Macromolecular Substances
4.
J Biol Chem ; 299(1): 102761, 2023 01.
Article in English | MEDLINE | ID: mdl-36463964

ABSTRACT

Pathogenic species from the Mycobacterium genus are responsible for a number of adverse health conditions in humans and animals that threaten health security and the economy worldwide. Mycobacteria have up to five specialized secretion systems (ESX-1 to ESX-5) that transport virulence factors across their complex cell envelope to facilitate manipulation of their environment. In pathogenic species, these virulence factors influence the immune system's response and are responsible for membrane disruption and contributing to cell death. While structural details of these secretion systems have been recently described, gaps still remain in the structural understanding of the secretion mechanisms of most substrates. Here, we describe the crystal structure of Mycobacterium tuberculosis ESX-1 secretion-associated substrate EspB bound to its chaperone EspK. We found that EspB interacts with the C-terminal domain of EspK through its helical tip. Furthermore, cryogenic electron microscopy, size exclusion chromatography analysis, and small-angle X-ray scattering experiments show that EspK keeps EspB in its secretion-competent monomeric form and prevents its oligomerization. The structure presented in this study suggests an additional secretion mechanism in ESX-1, analogous to the chaperoning of proline-glutamate (PE)-proline-proline-glutamate (PPE) proteins by EspG, where EspK facilitates the secretion of EspB in Mycobacterium species.


Subject(s)
Bacterial Outer Membrane Proteins , Bacterial Proteins , Mycobacterium tuberculosis , Virulence Factors , Humans , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Glutamates/metabolism , Mycobacterium tuberculosis/metabolism , Proline/metabolism , Virulence Factors/chemistry , Virulence Factors/metabolism , Cell Death , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/metabolism , Crystallization , Cryoelectron Microscopy
5.
Mol Microbiol ; 117(3): 682-692, 2022 03.
Article in English | MEDLINE | ID: mdl-34605588

ABSTRACT

Respiratory infections remain a major global health concern. Tuberculosis is one of the top 10 causes of death worldwide, while infections with Non-Tuberculous Mycobacteria are rising globally. Recent advances in human tissue modeling offer a unique opportunity to grow different human "organs" in vitro, including the human airway, that faithfully recapitulates lung architecture and function. Here, we have explored the potential of human airway organoids (AOs) as a novel system in which to assess the very early steps of mycobacterial infection. We reveal that Mycobacterium tuberculosis (Mtb) and Mycobacterium abscessus (Mabs) mainly reside as extracellular bacteria and infect epithelial cells with very low efficiency. While the AO microenvironment was able to control, but not eliminate Mtb, Mabs thrives. We demonstrate that AOs responded to infection by modulating cytokine, antimicrobial peptide, and mucin gene expression. Given the importance of myeloid cells in mycobacterial infection, we co-cultured infected AOs with human monocyte-derived macrophages and found that these cells interact with the organoid epithelium. We conclude that adult stem cell (ASC)-derived AOs can be used to decipher very early events of mycobacteria infection in human settings thus offering new avenues for fundamental and therapeutic research.


Subject(s)
Mycobacterium abscessus , Mycobacterium tuberculosis , Tuberculosis , Humans , Macrophages/microbiology , Nontuberculous Mycobacteria , Organoids , Tuberculosis/microbiology
6.
J Synchrotron Radiat ; 28(Pt 5): 1343-1356, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34475283

ABSTRACT

Imaging of biomolecules by ionizing radiation, such as electrons, causes radiation damage which introduces structural and compositional changes of the specimen. The total number of high-energy electrons per surface area that can be used for imaging in cryogenic electron microscopy (cryo-EM) is severely restricted due to radiation damage, resulting in low signal-to-noise ratios (SNR). High resolution details are dampened by the transfer function of the microscope and detector, and are the first to be lost as radiation damage alters the individual molecules which are presumed to be identical during averaging. As a consequence, radiation damage puts a limit on the particle size and sample heterogeneity with which electron microscopy (EM) can deal. Since a transmission EM (TEM) image is formed from the scattering process of the electron by the specimen interaction potential, radiation damage is inevitable. However, we can aim to maximize the information transfer for a given dose and increase the SNR by finding alternatives to the conventional phase-contrast cryo-EM techniques. Here some alternative transmission electron microscopy techniques are reviewed, including phase plate, multi-pass transmission electron microscopy, off-axis holography, ptychography and a quantum sorter. Their prospects for providing more or complementary structural information within the limited lifetime of the sample are discussed.


Subject(s)
Cryoelectron Microscopy/methods , Macromolecular Substances/ultrastructure , Electrons , Signal-To-Noise Ratio , Structure-Activity Relationship
7.
Curr Res Struct Biol ; 3: 153-164, 2021.
Article in English | MEDLINE | ID: mdl-34337436

ABSTRACT

ESX-1 is a major virulence factor of Mycobacterium tuberculosis, a secretion machinery directly involved in the survival of the microorganism from the immune system defence. It disrupts the phagosome membrane of the host cell through a contact-dependent mechanism. Recently, the structure of the inner-membrane core complex of the homologous ESX-3 and ESX-5 was resolved; however, the elements involved in the secretion through the outer membrane or those acting on the host cell membrane are unknown. Protein substrates might form this missing element. Here, we describe the oligomerisation process of the ESX-1 substrate EspB, which occurs upon cleavage of its C-terminal region and is favoured by an acidic environment. Cryo-electron microscopy data shows that quaternary structure of EspB is conserved across slow growing species, but not in the fast growing M. smegmatis. EspB assembles into a channel with dimensions and characteristics suitable for the transit of ESX-1 substrates, as shown by the presence of another EspB trapped within. Our results provide insight into the structure and assembly of EspB, and suggests a possible function as a structural element of ESX-1.

8.
Acta Crystallogr D Struct Biol ; 77(Pt 8): 1077-1083, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34342280

ABSTRACT

The use of cryo-EM continues to expand worldwide and calls for good-quality standard proteins with simple protocols for their production. Here, a straightforward expression and purification protocol is presented that provides an apoferritin, bacterioferritin B (BfrB), from Mycobacterium tuberculosis with high yield and purity. A 2.12 Šresolution cryo-EM structure of BfrB is reported, showing the typical cage-like oligomer constituting of 24 monomers related by 432 symmetry. However, it also contains a unique C-terminal extension (164-181), which loops into the cage region of the shell and provides extra stability to the protein. Part of this region was ambiguous in previous crystal structures but could be built within the cryo-EM map. These findings and this protocol could serve the growing cryo-EM community in characterizing and pushing the limits of their electron microscopes and workflows.


Subject(s)
Ferritins/chemistry , Mycobacterium tuberculosis/metabolism , Apoferritins/chemistry , Apoferritins/ultrastructure , Bacterial Proteins/chemistry , Bacterial Proteins/ultrastructure , Cryoelectron Microscopy , Cytochrome b Group/chemistry , Cytochrome b Group/ultrastructure , Ferritins/ultrastructure , Protein Conformation
9.
J Struct Biol ; 213(1): 107698, 2021 03.
Article in English | MEDLINE | ID: mdl-33545353

ABSTRACT

Cryo-electron tomography (CET) on cryo-focused ion beam (FIB)-milled lamellae is becoming a powerful technique for determining the structure of macromolecular complexes in their native cellular environment. Prior to tomogram reconstruction, CET tilt-series recorded on FIB lamellae need to be aligned. Traditionally, CET tilt-series alignment is performed with 5-20 nm gold fiducials, but it has thus far proven difficult to apply this to FIB lamellae of eukaryotic cells. In here, we describe a simple method to allow uptake of bovine serum albumin (BSA)-gold fiducials into mammalian cells via endocytosis, which can subsequently be used as fiducials for tilt-series alignment of cryo-FIB lamellae. We compare the alignment of tilt-series with BSA-gold fiducials to fiducial-less patch-tracking, and find better alignment results with BSA-gold. This technique can contribute to understand cells at a structural and ultrastructural level with both cryo- and room-temperature electron tomography. Furthermore, fluorescently labeled BSA-gold has the potential to be used as fiducials for correlative light and electron microscopy studies.


Subject(s)
Cryoelectron Microscopy/methods , Electron Microscope Tomography/methods , Endocytosis/physiology , Animals , Humans , Mammals , Serum Albumin, Bovine/chemistry
10.
J Struct Biol ; 213(1): 107701, 2021 03.
Article in English | MEDLINE | ID: mdl-33549695

ABSTRACT

Many pathogenic bacteria use the type III secretion system (T3SS), or injectisome, to secrete toxins into host cells. These protruding systems are primary targets for drug and vaccine development. Upon contact between injectisomes and host membranes, toxin secretion is triggered. How this works structurally and functionally is yet unknown. Using cryo-focused ion beam milling and cryo-electron tomography, we visualized injectisomes of Yersinia enterocolitica inside the phagosomes of infected human myeloid cells in a close-to-native state. We observed that a minimum needle length is required for injectisomes to contact the host membrane and bending of host membranes by some injectisomes that contact the host. Through subtomogram averaging, the structure of the entire injectisome was determined, which revealed structural differences in the cytosolic sorting platform compared to other bacteria. These findings contribute to understanding how injectisomes secrete toxins into host cells and provides the indispensable native context. The application of these cryo-electron microscopy techniques paves the way for the study of the 3D structure of infection-relevant protein complexes in host-pathogen interactions.


Subject(s)
Bacterial Proteins/metabolism , Phagosomes/chemistry , Phagosomes/metabolism , Yersinia enterocolitica/metabolism , Bacterial Proteins/chemistry , Cells, Cultured , Cryoelectron Microscopy/methods , Cytosol/chemistry , Cytosol/metabolism , Electron Microscope Tomography/methods , Host-Pathogen Interactions/physiology , Humans , Protein Transport/physiology , Type III Secretion Systems/chemistry , Type III Secretion Systems/metabolism , Yersinia enterocolitica/chemistry
11.
EMBO J ; 40(5): e105912, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33283287

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), which may result in acute respiratory distress syndrome (ARDS), multiorgan failure, and death. The alveolar epithelium is a major target of the virus, but representative models to study virus host interactions in more detail are currently lacking. Here, we describe a human 2D air-liquid interface culture system which was characterized by confocal and electron microscopy and single-cell mRNA expression analysis. In this model, alveolar cells, but also basal cells and rare neuroendocrine cells, are grown from 3D self-renewing fetal lung bud tip organoids. These cultures were readily infected by SARS-CoV-2 with mainly surfactant protein C-positive alveolar type II-like cells being targeted. Consequently, significant viral titers were detected and mRNA expression analysis revealed induction of type I/III interferon response program. Treatment of these cultures with a low dose of interferon lambda 1 reduced viral replication. Hence, these cultures represent an experimental model for SARS-CoV-2 infection and can be applied for drug screens.


Subject(s)
Alveolar Epithelial Cells/metabolism , COVID-19/metabolism , Models, Biological , Organoids/metabolism , SARS-CoV-2/physiology , Virus Replication , Alveolar Epithelial Cells/pathology , Alveolar Epithelial Cells/virology , Animals , COVID-19/virology , Chlorocebus aethiops , Gene Expression Regulation , Humans , Interferon Type I/biosynthesis , Interferons/biosynthesis , Organoids/pathology , Organoids/virology , Vero Cells , Interferon Lambda
12.
Ultramicroscopy ; 218: 113091, 2020 11.
Article in English | MEDLINE | ID: mdl-32835904

ABSTRACT

Modern direct electron detectors (DEDs) provided a giant leap in the use of cryogenic electron microscopy (cryo-EM) to study the structures of macromolecules and complexes thereof. However, the currently available commercial DEDs, all based on the monolithic active pixel sensor, still require relative long exposure times and their best results have only been obtained at 300 keV. There is a need for pixelated electron counting detectors that can be operated at a broader range of energies, at higher throughput and higher dynamic range. Hybrid Pixel Detectors (HPDs) of the Medipix family were reported to be unsuitable for cryo-EM at energies above 80 keV as those electrons would affect too many pixels. Here we show that the Timepix3, part of the Medipix family, can be used for cryo-EM applications at higher energies. We tested Timepix3 detectors on a 200 keV FEI Tecnai Arctica microscope and a 300 keV FEI Tecnai G2 Polara microscope. A correction method was developed to correct for per-pixel differences in output. Timepix3 data were simulated for individual electron events using the package Geant4Medipix. Global statistical characteristics of the simulated detector response were in good agreement with experimental results. A convolutional neural network (CNN) was trained using the simulated data to predict the incident position of the electron within a pixel cluster. After training, the CNN predicted, on average, 0.50 pixel and 0.68 pixel from the incident electron position for 200 keV and 300 keV electrons respectively. The CNN improved the MTF of experimental data at half Nyquist from 0.39 to 0.70 at 200 keV, and from 0.06 to 0.65 at 300 keV respectively. We illustrate that the useful dose-lifetime of a protein can be measured within a 1 second exposure using Timepix3.

13.
Nat Struct Mol Biol ; 27(7): 660-667, 2020 07.
Article in English | MEDLINE | ID: mdl-32541895

ABSTRACT

Amyloid deposits consisting of fibrillar islet amyloid polypeptide (IAPP) in pancreatic islets are associated with beta-cell loss and have been implicated in type 2 diabetes (T2D). Here, we applied cryo-EM to reconstruct densities of three dominant IAPP fibril polymorphs, formed in vitro from synthetic human IAPP. An atomic model of the main polymorph, built from a density map of 4.2-Å resolution, reveals two S-shaped, intertwined protofilaments. The segment 21-NNFGAIL-27, essential for IAPP amyloidogenicity, forms the protofilament interface together with Tyr37 and the amidated C terminus. The S-fold resembles polymorphs of Alzheimer's disease (AD)-associated amyloid-ß (Aß) fibrils, which might account for the epidemiological link between T2D and AD and reports on IAPP-Aß cross-seeding in vivo. The results structurally link the early-onset T2D IAPP genetic polymorphism (encoding Ser20Gly) with the AD Arctic mutation (Glu22Gly) of Aß and support the design of inhibitors and imaging probes for IAPP fibrils.


Subject(s)
Islet Amyloid Polypeptide/chemistry , Alzheimer Disease/physiopathology , Amino Acid Substitution , Amyloid beta-Peptides/chemistry , Cryoelectron Microscopy , Diabetes Mellitus, Type 2 , Humans , Hydrogen-Ion Concentration , Islet Amyloid Polypeptide/genetics , Islet Amyloid Polypeptide/metabolism , Models, Molecular , Molecular Dynamics Simulation , Protein Conformation
14.
Science ; 369(6499): 50-54, 2020 07 03.
Article in English | MEDLINE | ID: mdl-32358202

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can cause coronavirus disease 2019 (COVID-19), an influenza-like disease that is primarily thought to infect the lungs with transmission through the respiratory route. However, clinical evidence suggests that the intestine may present another viral target organ. Indeed, the SARS-CoV-2 receptor angiotensin-converting enzyme 2 (ACE2) is highly expressed on differentiated enterocytes. In human small intestinal organoids (hSIOs), enterocytes were readily infected by SARS-CoV and SARS-CoV-2, as demonstrated by confocal and electron microscopy. Enterocytes produced infectious viral particles, whereas messenger RNA expression analysis of hSIOs revealed induction of a generic viral response program. Therefore, the intestinal epithelium supports SARS-CoV-2 replication, and hSIOs serve as an experimental model for coronavirus infection and biology.


Subject(s)
Betacoronavirus/physiology , Enterocytes/virology , Ileum/virology , Virus Replication , Angiotensin-Converting Enzyme 2 , Betacoronavirus/ultrastructure , Cell Culture Techniques , Cell Differentiation , Cell Lineage , Cell Proliferation , Culture Media , Enterocytes/metabolism , Enterocytes/ultrastructure , Gene Expression , Humans , Ileum/metabolism , Ileum/ultrastructure , Lung/virology , Male , Organoids , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Virus/genetics , Receptors, Virus/metabolism , Respiratory Mucosa/virology , Severe acute respiratory syndrome-related coronavirus/physiology , SARS-CoV-2
15.
Nat Commun ; 11(1): 2563, 2020 05 22.
Article in English | MEDLINE | ID: mdl-32444637

ABSTRACT

The increasing demand for cryo-electron microscopy (cryo-EM) reveals drawbacks in current sample preparation protocols, such as sample waste and lack of reproducibility. Here, we present several technical developments that provide efficient sample preparation for cryo-EM studies. Pin printing substantially reduces sample waste by depositing only a sub-nanoliter volume of sample on the carrier surface. Sample evaporation is mitigated by dewpoint control feedback loops. The deposited sample is vitrified by jets of cryogen followed by submersion into a cryogen bath. Because the cryogen jets cool the sample from the center, premounted autogrids can be used and loaded directly into automated cryo-EMs. We integrated these steps into a single device, named VitroJet. The device's performance was validated by resolving four standard proteins (apoferritin, GroEL, worm hemoglobin, beta-galactosidase) to ~3 Å resolution using a 200-kV electron microscope. The VitroJet offers a promising solution for improved automated sample preparation in cryo-EM studies.


Subject(s)
Printing, Three-Dimensional , Proteins/ultrastructure , Specimen Handling/methods , Cryoelectron Microscopy , Printing, Three-Dimensional/instrumentation , Proteins/chemistry , Reproducibility of Results , Single Molecule Imaging , Specimen Handling/instrumentation
16.
Int J Biol Macromol ; 149: 1051-1058, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32006583

ABSTRACT

Kainate receptors belong to the ionotropic glutamate receptor family and play critical roles in the regulation of synaptic networks. The kainate receptor subunit GluK3 has unique functional properties and contributes to presynaptic facilitation at the hippocampal mossy fiber synapses along with roles at the post-synapses. To gain structural insights into the unique functional properties and dynamics of GluK3 receptor, we imaged them via electron microscopy in the apo-state and in complex with either agonist kainate or antagonist UBP301. Our analysis of all the GluK3 full-length structures not only provides insights into the receptor transitions between desensitized and closed states but also reveals a "non-classical" conformation of neurotransmitter binding domain in the closed-state distinct from that observed in AMPA and other kainate receptor structures. We show by molecular dynamics simulations that Asp759 influences the stability of the LBD dimers and hence could be responsible for the observed conformational variability and dynamics of the GluK3 via electron microscopy. Lower dimer stability could explain faster desensitization and low agonist sensitivity of GluK3. In overview, our work helps to associate biochemistry and physiology of GluK3 receptors with their structural biology and offers structural insights into the unique functional properties of these atypical receptors.


Subject(s)
Cryoelectron Microscopy , Neurotransmitter Agents/metabolism , Receptors, Kainic Acid/chemistry , Receptors, Kainic Acid/ultrastructure , Aspartic Acid/chemistry , HEK293 Cells , Humans , Kainic Acid/metabolism , Ligands , Models, Molecular , Protein Domains , Protein Multimerization , Receptors, Kainic Acid/isolation & purification , GluK3 Kainate Receptor
17.
Nat Commun ; 10(1): 3754, 2019 08 21.
Article in English | MEDLINE | ID: mdl-31434882

ABSTRACT

High resolution structural information on amyloid fibrils is crucial for the understanding of their formation mechanisms and for the rational design of amyloid inhibitors in the context of protein misfolding diseases. The Src-homology 3 domain of phosphatidyl-inositol-3-kinase (PI3K-SH3) is a model amyloid system that plays a pivotal role in our basic understanding of protein misfolding and aggregation. Here, we present the atomic model of the PI3K-SH3 amyloid fibril with a resolution determined to 3.4 Å by cryo-electron microscopy (cryo-EM). The fibril is composed of two intertwined protofilaments that create an interface spanning 13 residues from each monomer. The model comprises residues 1-77 out of 86 amino acids in total, with the missing residues located in the highly flexible C-terminus. The fibril structure allows us to rationalise the effects of chemically conservative point mutations as well as of the previously reported sequence perturbations on PI3K-SH3 fibril formation and growth.


Subject(s)
Amyloid/chemistry , Cryoelectron Microscopy/methods , Phosphatidylinositol 3-Kinase/chemistry , src Homology Domains , Amino Acid Sequence , Base Sequence , Models, Molecular , Mutation , Phosphatidylinositol 3-Kinase/genetics , Protein Aggregates , Protein Conformation , src Homology Domains/genetics
18.
Sci Rep ; 9(1): 7218, 2019 05 10.
Article in English | MEDLINE | ID: mdl-31076614

ABSTRACT

Over the last few years, tremendous progress has been made in visualizing biologically important macromolecules using transmission electron microscopy (TEM) and understanding their structure-function relation. Yet, despite the importance of DNA in all forms of life, TEM visualization of individual DNA molecules in its native unlabeled form has remained extremely challenging. Here, we present high-contrast images of unstained single-layer DNA nanostructures that were obtained using advanced in-focus phase contrast TEM techniques. These include sub-Ångstrom low voltage electron microscopy (SALVE), the use of a volta-potential phase plate (VPP), and dark-field (DF) microscopy. We discuss the advantages and drawbacks of these techniques for broad applications in structural biology and materials science.


Subject(s)
DNA/chemistry , Microscopy, Electron, Transmission/methods , Nanostructures/chemistry , Image Processing, Computer-Assisted , Microscopy, Phase-Contrast
19.
J Appl Crystallogr ; 51(Pt 5): 1421-1427, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30279641

ABSTRACT

The installation of multi-axis goniometers such as the ESRF/EMBL miniKappa goniometer system has allowed the increased use of sample reorientation in macromolecular crystallography. Old and newly appearing data collection methods require precision and accuracy in crystal reorientation. The proper use of such multi-axis systems has necessitated the development of rapid and easy to perform methods for establishing and evaluating device calibration. A new diffraction-based method meeting these criteria has been developed for the calibration of the motors responsible for rotational motion. This method takes advantage of crystal symmetry by comparing the orientations of a sample rotated about a given axis and checking that the magnitude of the real rotation fits the calculated angle between these two orientations. Hence, the accuracy and precision of rotational motion can be assessed. This rotation calibration procedure has been performed on several beamlines at the ESRF and other synchrotrons. Some resulting data are presented here for reference.

20.
Ultramicroscopy ; 191: 1-10, 2018 08.
Article in English | MEDLINE | ID: mdl-29705643

ABSTRACT

A new method for dealing with incomplete projection sets in electron tomography is proposed. The approach is inspired by exemplar-based inpainting techniques in image processing and heuristically generates data for missing projection directions. The method has been extended to work on three dimensional data. In general, electron tomography reconstructions suffer from elongation artifacts along the beam direction. These artifacts can be seen in the corresponding Fourier domain as a missing wedge. The new method synthetically generates projections for these missing directions with the help of a dictionary based approach that is able to convey both structure and texture at the same time. It constitutes a preprocessing step that can be combined with any tomographic reconstruction algorithm. The new algorithm was applied to phantom data, to a real electron tomography data set taken from a catalyst, as well as to a real dataset containing solely colloidal gold particles. Visually, the synthetic projections, reconstructions, and corresponding Fourier power spectra showed a decrease of the typical missing wedge artifacts. Quantitatively, the inpainting method is capable to reduce missing wedge artifacts and improves tomogram quality with respect to full width half maximum measurements.

SELECTION OF CITATIONS
SEARCH DETAIL
...