Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 13(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38334621

ABSTRACT

Interleukin-6 (IL-6) superfamily cytokines play critical roles during human pregnancy by promoting trophoblast differentiation, invasion, and endocrine function, and maintaining embryo immunotolerance and protection. In contrast, the unbalanced activity of pro-inflammatory factors such as interferon gamma (IFNγ) and granulocyte-macrophage colony-stimulating factor (GM-CSF) at the maternal-fetal interface have detrimental effects on trophoblast function and differentiation. This study demonstrates how the IL-6 cytokine family member oncostatin M (OSM) and STAT3 activation regulate trophoblast fusion and endocrine function in response to pro-inflammatory stress induced by IFNγ and GM-CSF. Using human cytotrophoblast-like BeWo (CT/BW) cells, differentiated in villous syncytiotrophoblast (VST/BW) cells, we show that beta-human chorionic gonadotrophin (ßhCG) production and cell fusion process are affected in response to IFNγ or GM-CSF. However, those effects are abrogated with OSM by modulating the activation of IFNγ-STAT1 and GM-CSF-STAT5 signaling pathways. OSM stimulation enhances the expression of STAT3, the phosphorylation of STAT3 and SMAD2, and the induction of negative regulators of inflammation (e.g., IL-10 and TGFß1) and cytokine signaling (e.g., SOCS1 and SOCS3). Using STAT3-deficient VST/BW cells, we show that STAT3 expression is required for OSM to regulate the effects of IFNγ in ßhCG and E-cadherin expression. In contrast, OSM retains its modulatory effect on GM-CSF-STAT5 pathway activation even in STAT3-deficient VST/BW cells, suggesting that OSM uses STAT3-dependent and -independent mechanisms to modulate the activation of pro-inflammatory pathways IFNγ-STAT1 and GM-CSF-STAT5. Moreover, STAT3 deficiency in VST/BW cells leads to the production of both a large amount of ßhCG and an enhanced expression of activated STAT5 induced by GM-CSF, independently of OSM, suggesting a key role for STAT3 in ßhCG production and trophoblast differentiation through STAT5 modulation. In conclusion, our study describes for the first time the critical role played by OSM and STAT3 signaling pathways to preserve and regulate trophoblast biological functions during inflammatory stress.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor , Interferon-gamma , Pregnancy , Female , Humans , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Interferon-gamma/pharmacology , Interferon-gamma/metabolism , Oncostatin M/pharmacology , Oncostatin M/metabolism , STAT5 Transcription Factor/metabolism , Interleukin-6/metabolism , Signal Transduction , Trophoblasts/metabolism , STAT3 Transcription Factor/metabolism
2.
Mol Immunol ; 120: 32-42, 2020 04.
Article in English | MEDLINE | ID: mdl-32045772

ABSTRACT

The pleiotropic cytokine leukemia inhibitory factor (LIF) is a key gestational factor known to establish dynamic cellular and molecular cross talk at the feto-maternal interface. Previously, we described the regulatory role of the LIF-trophoblast-IL10 axis in the process of macrophage deactivation in response to pro-inflammatory cytokines. However, the direct regulatory effects of LIF in macrophage and trophoblast cell function remains elusive. In this study, we aimed to examine whether and how LIF regulates the behavior of macrophages and trophoblast cells in response to pro-inflammatory stress factors. We found that LIF modulated the activating effects of interferon-gamma (IFNγ) and granulocyte-macrophage colony-stimulating factor (GM-CSF) in macrophages and trophoblast cells by reducing the phosphorylation levels of signal transducer and activator of transcription-1 (Stat1) and -5 (Stat5). Cell activation with IFNγ inhibited cell invasion and migration but this immobilizing effect was abrogated when macrophages and trophoblast cells were deactivated with LIF; macrophage cell motility restitution could in part be explained by the positive effects of LIF in Stat3 activation and matrix metalloproteinase 9 (MMP-9) expression. Pharmacological inhibition of Stat1 and Stat3 indicated that IFNγ-induced Stat1 activation mediated macrophage motility inhibition, and that cell motility in IFNγ-activated macrophages is restored via LIF-induced Stat3 activation and Stat1 inhibition. Moreover, IFNγ-induced TNFα gene expression was also abrogated by LIF through Stat1 inhibition and Stat3 activation. Finally, we have found that cell invasion of trophoblast cells is inhibited when they were cocultured with GM-CSF-differentiated, IFNγ-stimulated macrophages. This effect, however, was inhibited when macrophages were exposed to LIF. Overall, this in vitro study reveals for the first time the anti-inflammatory and pro-gestational activities of LIF by acting directly on macrophages and trophoblast cells.


Subject(s)
Inflammation Mediators/immunology , Leukemia Inhibitory Factor/immunology , Macrophages/immunology , Trophoblasts/immunology , Cell Line , Cell Movement/immunology , Coculture Techniques , Female , Gene Expression , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Humans , Interferon-gamma/immunology , Macrophage Activation , Macrophages/cytology , Macrophages/metabolism , Maternal-Fetal Exchange/immunology , Matrix Metalloproteinase 9/metabolism , Pregnancy , STAT1 Transcription Factor/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction/immunology , Trophoblasts/cytology , Trophoblasts/metabolism
3.
Med Sci Sports Exerc ; 51(1): 4-11, 2019 01.
Article in English | MEDLINE | ID: mdl-30095751

ABSTRACT

Sickle cell disease (SCD) is the most frequent life-threatening genetic hemoglobinopathy in the world and occurs due to the synthesis of abnormal hemoglobin S (HbS). hemoglobin S-containing red blood cells (RBC) are fragile, leading to hemolysis and anemia, and adhere to the endothelium, leading to hemorheological and hemodynamical disturbances. In its deoxygenated form, HbS may polymerize, leading to sickling of red blood cells and potentially to vasoocclusive crises. Recent findings observed that SCD patients demonstrate significant skeletal muscle remodeling and display reduced muscle functional capacities, contributing to exercise intolerance and poor quality of life. Although acute high-intensity exercise is not recommended for SCD patients because it may increase the risk of sickling, regular moderate-intensity physical activity could have beneficial effects on skeletal muscle and more generally on the well-being of SCD patients. This article reviews the literature regarding the impact of the disease on muscular tissue characteristics and function, as well as the corresponding implications for SCD patients' quality of life.


Subject(s)
Activities of Daily Living , Anemia, Sickle Cell/physiopathology , Muscle, Skeletal/physiopathology , Quality of Life , Anemia, Sickle Cell/pathology , Anemia, Sickle Cell/therapy , Animals , Exercise Therapy/adverse effects , Exercise Tolerance , Humans , Microcirculation , Muscle Fatigue/physiology , Muscle, Skeletal/blood supply , Muscle, Skeletal/pathology , Vascular Remodeling
5.
Medicine (Baltimore) ; 95(31): e4497, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27495097

ABSTRACT

BACKGROUND: Previous randomized controlled trials investigating exercise training programs in facioscapulohumeral muscular dystrophy (FSHD) patients are scarce and of short duration only. This study assessed the safety and efficacy of a 6-month home-based exercise training program on fitness, muscle, and motor function in FSHD patients. METHODS: Sixteen FSHD patients were randomly assigned to training (TG) and control (CG) groups (both n = 8) in a home-based exercise intervention. Training consisted of cycling 3 times weekly for 35 minutes (combination of strength, high-intensity interval, and low-intensity aerobic) at home for 24 weeks. Patients in CG also performed an identical training program (CTG) after 24 weeks. The primary outcome was change in peak oxygen uptake (VO2 peak) measured every 6 weeks. The principal secondary outcomes were maximal quadriceps strength (MVC) and local quadriceps endurance every 12 weeks. Other outcome measures included maximal aerobic power (MAP) and experienced fatigue every 6 weeks, 6-minute walking distance every 12 weeks, and muscle characteristics from vastus lateralis biopsies taken pre- and postintervention. RESULTS: The compliance rate was 91% in TG. Significant improvements with training were observed in the VO2 peak (+19%, P = 0.002) and MAP by week 6 and further to week 24. Muscle endurance, MVC, and 6-minute walking distance increased and experienced fatigue decreased. Muscle fiber cross-sectional area and citrate synthase activity increased by 34% (P = 0.008) and 46% (P = 0.003), respectively. Dystrophic pathophysiologic patterns were not exacerbated. Similar improvements were experienced by TG and CTG. CONCLUSIONS: A combined strength and interval cycling exercise-training program compatible with patients' daily professional and social activities leads to significant functional benefits without compromising muscle tissue.


Subject(s)
Exercise Therapy , Muscular Dystrophy, Facioscapulohumeral/therapy , Adult , Biopsy , Creatine Kinase/blood , Exercise Test , Fatigue/physiopathology , Fatigue/prevention & control , Female , Humans , Male , Muscle Strength/physiology , Muscle, Skeletal/pathology , Muscular Dystrophy, Facioscapulohumeral/physiopathology , Oxygen Consumption/physiology , Physical Endurance/physiology , Quality of Life
6.
Am J Pathol ; 185(5): 1448-56, 2015 May.
Article in English | MEDLINE | ID: mdl-25773175

ABSTRACT

Sickle cell anemia (SCA) is a hemoglobinopathy leading to major hematologic, hemorheologic, and hemodynamic disorders that induce various complications, including organ failure, and ultimately lead to death. Here, we assessed for the first time repercussions of SCA on skeletal muscle and its microvasculature. Twenty-seven sedentary Cameroonian volunteer men participated in the study. They were assigned to one of three groups according to their hemoglobin status (healthy control subjects, n = 10; sickle cell trait carriers, n = 10; and SCA patients, n = 7) and underwent muscle biopsy of the vastus lateralis. SCA was associated with microvessel rarefaction, decrease in capillary tortuosity, and widening of microvessel diameter. The absence of capillary wall reinforcement was shown by lack of wall thickening and lack of fibrous tissue or smooth muscle in their constitution. We also observed changes in fiber type distribution, muscle atrophy, an increase in satellite cell number, and a decrease in activity of creatine kinase and several oxidative enzymes. No signs of tissue necrosis, inflammatory stress, fibrosis, or segmented fibers were observed. The present study highlighted marked effects of SCA on microvascular, structural, and energetic characteristics of skeletal muscle.


Subject(s)
Anemia, Sickle Cell/pathology , Microvessels/pathology , Muscle, Skeletal/blood supply , Muscle, Skeletal/pathology , Vascular Remodeling/physiology , Adult , Humans , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...