Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 17265, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36241649

ABSTRACT

Mortality at early life stages of fishes is common in nature and can be shaped by stochastic and selective processes. Selective mortality has rarely been assessed in natural conditions but can now be studied by combining genomic data with information on different life stages that realates to fitness. Here we investigate selective mortality between settlers and six-month survivors of the sharpsnout seabream by genotype-phenotype/environmental association studies in three localities along a geographic gradient. We gathered information on 105 individuals at 85,031 SNPs, obtained from individual based 2b-RAD libraries, as well as 9 phenotypic and environmental variables derived from individual otolith readings. We found common signals across localities for potential selection, such as lower survival rates for individuals hatching earlier, growing faster and experiencing higher temperatures during their planktonic phase. We identified 122 loci with parallel significant association to phenotypic and environmental variables. Importantly, one of these loci mapped to the exonic region of the il20rb, a gene involved in immune response, in the phylogenetically closest reference genome, showing parallel frequency changes in non-synonymous mutations in the three studied populations. Further temporal assessments are needed to understand how polymorphisms that are key to selective mortality are maintained.


Subject(s)
Perciformes , Sea Bream , Animals , Genome , Genomics , Otolithic Membrane , Polymorphism, Single Nucleotide , Sea Bream/genetics
2.
J Anim Ecol ; 90(6): 1419-1432, 2021 06.
Article in English | MEDLINE | ID: mdl-33508875

ABSTRACT

As species struggle to cope with rising ocean temperatures, temperate marine assemblages are facing major reorganization. Many benthic species have a brief but critical period dispersing through the plankton, when they are particularly susceptible to variations in temperature. Impacts of rising temperatures can thus ripple through the population with community-wide consequences. However, responses are highly species-specific, making it difficult to discern assemblage-wide patterns in the life histories of different fish species. Here, we evaluate the responses to temperature in the early life histories of several fish species using otolith reconstructive techniques. We also assess the consequences of future warming scenarios to this assemblage. We sampled recent settlers of nine common species across a temperature gradient in the Mediterranean Sea and obtained environmental data for each individual. Using otolith microstructure, we measured early life traits including pelagic larval duration (PLD), growth rate, settlement size, hatching and settlement dates. We used a GLM framework to examine how environmental variables influenced early life-history parameters. We show that increasing temperature results in considerable reduction in the dispersal potential of temperate fish. We find a nearly universal, assemblage-wide decline in pelagic larval duration (PLD) of between 10% and 25%. This was because, with increasing temperature, larvae grew quicker to their settlement size. Settlement size itself was less affected by temperature and appears to be an ontogenetically fixed process. Given current estimates of ocean warming, there could be an assemblage-wide reduction in larval dispersal of up to 50 km across the Mediterranean, reducing connectivity and potentially isolating populations as waters warm.


Subject(s)
Fishes , Otolithic Membrane , Animals , Larva , Mediterranean Sea , Temperature
3.
Mar Environ Res ; 165: 105237, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33476979

ABSTRACT

Apart from directly influencing individual life histories of species, climate change is altering key biotic interactions as well, causing community processes to unravel. With rising temperatures, disruptions to producer-consumer relationships can have major knock-on effects, particularly when the producer is a habitat-forming species. We studied how sea surface temperature (SST) modifies multiple pathways influencing the interaction between the foundational seagrass species, Posidonia oceanica, and its main consumer, the fish Sarpa salpa in the Mediterranean Sea. We used a combination of a field-based temperature gradient approaches and experimental manipulations to assess the effect of temperature on seagrass performance (growth) and fish early life history (larval development) as well as on the interaction itself (seagrass palatability and fish foraging activity). Within the range of temperatures assessed, S. salpa larvae grew slightly faster at warmer conditions but maintained their settlement size, resulting in a relatively small reduction in pelagic larval duration (PLD) and potentially reducing dispersion. Under warmer conditions (>24 °C), P. oceanica reduced its growth rate considerably and seemed to display fewer deterring mechanisms as indicated by a disproportionate consumption in choice experiments. However, our field-based observations along the temperature gradient showed no change in fish foraging time, or in other aspects of feeding behaviour. As oceans warm, our results indicate that, while S. salpa may show little change in early life history, its preference towards P. oceanica might increase, which, together with reduced seagrass growth, could considerably intensify the strength of herbivory. It is unclear if P. oceanica meadows can sustain such an intensification, but it will clearly add to the raft of pressures this threatened ecosystem already faces from global and local environmental change.


Subject(s)
Alismatales , Perciformes , Animals , Ecosystem , Herbivory , Mediterranean Sea
4.
Sci Rep ; 10(1): 12683, 2020 07 29.
Article in English | MEDLINE | ID: mdl-32728037

ABSTRACT

Connectivity and local adaptation are two contrasting evolutionary forces highly influencing population structure. To evaluate the impact of early-life traits and environmental conditions on genetic structuring and adaptation, we studied two sympatric fish species in the Western Mediterranean Sea: Symphodus tinca and S. ocellatus. We followed an individual-based approach and measured early-life history traits from otolith readings, gathered information on environmental variables and obtained genome-wide markers from genotyping-by-sequencing (GBS). The two species presented contrasting population structure across the same geographic gradient, with high and significant population differentiation in S. ocellatus, mostly determined by oceanographic fronts, and low differentiation and no front effect in S. tinca. Despite their different levels of genetic differentiation, we identified in both species candidate regions for local adaptation by combining outlier analysis with environmental and phenotypic association analyses. Most candidate loci were associated to temperature and productivity in S. ocellatus and to temperature and turbulence in S. tinca suggesting that different drivers may determine genomic diversity and differentiation in each species. Globally, our study highlights that individual-based approach combining genomic, environmental and phenotypic information is key to identify signals of selection and the processes mediating them.


Subject(s)
Fishes/physiology , Genomics/methods , Animals , Animals, Congenic , Biological Evolution , Fishes/classification , Fishes/genetics , Life History Traits , Sequence Analysis, DNA , Species Specificity , Sympatry
5.
Gastroenterol Res Pract ; 2009: 679830, 2009.
Article in English | MEDLINE | ID: mdl-19902004

ABSTRACT

BACKGROUND: Aproximatelly 30% of patients operated on for colorectal cancer (CRC), with an expectedly favourable prognosis (Dukes A-B/T1-T4, N0, M0) suffer recurrence and/or die. METHOD: In order to determine if tumor microvascular density (MVD) is a prognostic factor in CRC, samples from tumors of 104 Dukes A-B CRC patients were retrospectively studied. Immunohistochemistry was performed for anti-CD34 antibody to visualize tumor vascularisation. MVD was expressed as the total number of vessels and as the percentage of microvascular area. We calculated MVD with a morphometry program and performed descriptive, bivariate, and survival statistics. RESULTS: The mean number of vessels was 37.37/200x field, and the mean vascular area was the 3.972%. 30% of the patients with < 37 vessels/field, and 21% of the patients with > 37 vessels/field, experienced recurrence/death. The 35% of patients with < 4% of vascular area died following recurrence, compared with 14% of patients with > or =4% of vascular area. These differences in % of vascular area were statistically significant. CONCLUSION: MVD expressed as the total number of vessels had no a statistically significant influence on the evolution of CRC. However, neoplasias with a greater % of vascular were associated to a better outcome.

SELECTION OF CITATIONS
SEARCH DETAIL
...