Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Heliyon ; 9(10): e20406, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37810864

ABSTRACT

Peptic ulcer disease (PUD) is one of the most prevalent gastro intestinal disorder which often leads to painful sores in the stomach lining and intestinal bleeding. Untreated Helicobacter pylori (H. pylori) infection is one of the major reasons for chronic PUD which, if left untreated, may also result in gastric cancer. Treatment of H. pylori is always a challenge to the treating doctor because of the poor bioavailability of the drug at the inner layers of gastric mucosa where the bacteria resides. This results in ineffective therapy and antibiotic resistance. Current treatment regimens available for gastric ulcer and H. pylori infection uses a combination of multiple antimicrobial agents, proton pump inhibitors (PPIs), H2-receptor antagonists, dual therapy, triple therapy, quadruple therapy and sequential therapy. This polypharmacy approach leads to patient noncompliance during long term therapy. Management of H. pylori induced gastric ulcer is a burning issue that necessitates alternative treatment options. Novel formulation strategies such as extended-release gastro retentive drug delivery systems (GRDDS) and nanoformulations have the potential to overcome the current bioavailability challenges. This review discusses the current status of H. pylori treatment, their limitations and the formulation strategies to overcome these shortcomings. Authors propose here an innovative strategy to improve the H. pylori eradication efficiency.

2.
Pharmaceutics ; 15(4)2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37111689

ABSTRACT

The first conductive polymers (CPs) were developed during the 1970s as a unique class of organic substances with properties that are electrically and optically comparable to those of inorganic semiconductors and metals while also exhibiting the desirable traits of conventional polymers. CPs have become a subject of intensive research due to their exceptional qualities, such as high mechanical and optical properties, tunable electrical characteristics, ease of synthesis and fabrication, and higher environmental stability than traditional inorganic materials. Although conducting polymers have several limitations in their pure state, coupling with other materials helps overcome these drawbacks. Owing to the fact that various types of tissues are responsive to stimuli and electrical fields has made these smart biomaterials attractive for a range of medical and biological applications. For various applications, including the delivery of drugs, biosensors, biomedical implants, and tissue engineering, electrical CPs and composites have attracted significant interest in both research and industry. These bimodalities can be programmed to respond to both internal and external stimuli. Additionally, these smart biomaterials have the ability to deliver drugs in various concentrations and at an extensive range. This review briefly discusses the commonly used CPs, composites, and their synthesis processes. Further highlights the importance of these materials in drug delivery along with their applicability in various delivery systems.

3.
Molecules ; 27(21)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36364338

ABSTRACT

Background and Introduction: Saxagliptin is a hypoglycemic drug that acts as a dipeptidyl peptidase-4 (DPP-4) inhibitor and is preferably used in the treatment of Type 2 Diabetes Mellitus (T2DM). It is safe and tolerable; however, the major disadvantage associated with it is its low bioavailability. Aim: The present research aimed to enhance the bioavailability of the drug by enteric coating with a polymer that controls the rate of drug delivery, and it was prepared as Solid Lipid Nanoparticles (SLNs). Methodology: In the current study, various SLN formulations were developed using a central composite design (CCD) module using Design Expert-11 software. A modified solvent injection technique was used to prepare Saxagliptin nanoparticles coated with Eudragit RS100. The CCD was used to determine the independent variables and their effect on dependent variables at varied levels. Evaluation studies such as particle size analysis, Zeta potential, polydispersity index (PDI), drug loading, entrapment efficiency, in-vitro drug release studies, and in vivo pharmacokinetic studies were performed for the optimized SLN formulation. The reversed-phase HPLC method was developed and validated for the estimation of the pharmacokinetic parameters of the pure drug and prepared SLNs. Results: The effect of independent variables (A1: amount of lipid, A2: amount of polymer, A3: surfactant concentration, and A4: homogenization speed) on dependent variables (R1: particle size, and R2: entrapment efficiency) was established in great detail. Observed responses of the prepared and optimized Saxagliptin SLN were close to the predicted values by the CCD. The prepared SLNs depicted particle sizes in the range of 212-442 nm. The particle size analysis results showed that an increase in the lipid concentration led to an increase in particle size. The developed bioanalytical method was noted to be very specific and robust. The method accuracy varied from 99.16% to 101.95% for intraday, and 96.08% to 103.12% for inter day operation at low (5 mcg/mL), moderate (10 mcg/mL), and higher (15 mcg/mL) drug concentrations. The observed Zeta potential values for the prepared SLNs were in the range of -41.09 ± 0.11 to 30.86 ± 0.63 mV suggesting quite good stability of the SLNs without any aggregation. Moreover, the polydispersity indices were in the range of 0.26 ± 0.051 to 0.45 ± 0.017, indicative of uniformity of sizes among the prepared SLNs. In vivo study outcomes proved that Saxagliptin oral bioavailability significantly enhanced in male Albino Wistar Rats via SLN formulation and Eudragit RS100 coating approach. Conclusions: The developed and optimized Saxagliptin SLNs revealed enhanced Saxagliptin bioavailability in comparison to the native drug. Thus, this formulation strategy can be of great importance and can be implied as a promising approach to enhance the Saxagliptin bioavailability for facilitated T2DM therapy.


Subject(s)
Diabetes Mellitus, Type 2 , Nanoparticles , Rats , Animals , Male , Lipids , Diabetes Mellitus, Type 2/drug therapy , Particle Size , Polymethacrylic Acids , Biological Availability , Rats, Wistar , Hypoglycemic Agents , Drug Carriers
SELECTION OF CITATIONS
SEARCH DETAIL