Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Bacteriol ; 201(8)2019 04 15.
Article in English | MEDLINE | ID: mdl-30692174

ABSTRACT

Spores are the major infectious particle of the Gram-positive nosocomial pathogen Clostridioides difficile (formerly Clostridium difficile), but the molecular details of how this organism forms these metabolically dormant cells remain poorly characterized. The composition of the spore coat in C. difficile differs markedly from that defined in the well-studied organism Bacillus subtilis, with only 25% of the ∼70 spore coat proteins being conserved between the two organisms and with only 2 of 9 coat assembly (morphogenetic) proteins defined in B. subtilis having homologs in C. difficile We previously identified SipL as a clostridium-specific coat protein essential for functional spore formation. Heterologous expression analyses in Escherichia coli revealed that SipL directly interacts with C. difficile SpoIVA, a coat-morphogenetic protein conserved in all spore-forming organisms, through SipL's C-terminal LysM domain. In this study, we show that SpoIVA-SipL binding is essential for C. difficile spore formation and identify specific residues within the LysM domain that stabilize this interaction. Fluorescence microscopy analyses indicate that binding of SipL's LysM domain to SpoIVA is required for SipL to localize to the forespore while SpoIVA requires SipL to promote encasement of SpoIVA around the forespore. Since we also show that clostridial LysM domains are functionally interchangeable at least in C. difficile, the basic mechanism for SipL-dependent assembly of clostridial spore coats may be conserved.IMPORTANCE The metabolically dormant spore form of the major nosocomial pathogen Clostridioides difficile is its major infectious particle. However, the mechanisms controlling the formation of this resistant cell type are not well understood, particularly with respect to its outermost layer, the spore coat. We previously identified two spore-morphogenetic proteins in C. difficile: SpoIVA, which is conserved in all spore-forming organisms, and SipL, which is conserved only in the clostridia. Both SpoIVA and SipL are essential for heat-resistant spore formation and directly interact through SipL's C-terminal LysM domain. In this study, we demonstrate that the LysM domain is critical for SipL and SpoIVA function, likely by helping recruit SipL to the forespore during spore morphogenesis. We further identified residues within the LysM domain that are important for binding SpoIVA and, thus, functional spore formation. These findings provide important insight into the molecular mechanisms controlling the assembly of infectious C. difficile spores.


Subject(s)
Bacterial Proteins/metabolism , Clostridioides difficile/enzymology , Clostridioides difficile/growth & development , Spores, Bacterial/growth & development , Bacterial Proteins/genetics , Clostridioides difficile/genetics , Protein Binding , Protein Interaction Mapping , Protein Transport , Spores, Bacterial/genetics
2.
mSphere ; 2(5)2017.
Article in English | MEDLINE | ID: mdl-28959733

ABSTRACT

The spore-forming bacterial pathogen Clostridium difficile is a leading cause of health care-associated infections in the United States. In order for this obligate anaerobe to transmit infection, it must form metabolically dormant spores prior to exiting the host. A key step during this process is the assembly of a protective, multilayered proteinaceous coat around the spore. Coat assembly depends on coat morphogenetic proteins recruiting distinct subsets of coat proteins to the developing spore. While 10 coat morphogenetic proteins have been identified in Bacillus subtilis, only two of these morphogenetic proteins have homologs in the Clostridia: SpoIVA and SpoVM. C. difficile SpoIVA is critical for proper coat assembly and functional spore formation, but the requirement for SpoVM during this process was unknown. Here, we show that SpoVM is largely dispensable for C. difficile spore formation, in contrast with B. subtilis. Loss of C. difficile SpoVM resulted in modest decreases (~3-fold) in heat- and chloroform-resistant spore formation, while morphological defects such as coat detachment from the forespore and abnormal cortex thickness were observed in ~30% of spoVM mutant cells. Biochemical analyses revealed that C. difficile SpoIVA and SpoVM directly interact, similarly to their B. subtilis counterparts. However, in contrast with B. subtilis, C. difficile SpoVM was not essential for SpoIVA to encase the forespore. Since C. difficile coat morphogenesis requires SpoIVA-interacting protein L (SipL), which is conserved exclusively in the Clostridia, but not the more broadly conserved SpoVM, our results reveal another key difference between C. difficile and B. subtilis spore assembly pathways. IMPORTANCE The spore-forming obligate anaerobe Clostridium difficile is the leading cause of antibiotic-associated diarrheal disease in the United States. When C. difficile spores are ingested by susceptible individuals, they germinate within the gut and transform into vegetative, toxin-secreting cells. During infection, C. difficile must also induce spore formation to survive exit from the host. Since spore formation is essential for transmission, understanding the basic mechanisms underlying sporulation in C. difficile could inform the development of therapeutic strategies targeting spores. In this study, we determine the requirement of the C. difficile homolog of SpoVM, a protein that is essential for spore formation in Bacillus subtilis due to its regulation of coat and cortex formation. We observed that SpoVM plays a minor role in C. difficile spore formation, in contrast with B. subtilis, indicating that this protein would not be a good target for inhibiting spore formation.

SELECTION OF CITATIONS
SEARCH DETAIL
...