Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Proc Conf Empir Methods Nat Lang Process ; 2022(SD): 109-120, 2022 Dec.
Article in English | MEDLINE | ID: mdl-38476318

ABSTRACT

Diagnostic coding, or ICD coding, is the task of assigning diagnosis codes defined by the ICD (International Classification of Diseases) standard to patient visits based on clinical notes. The current process of manual ICD coding is time-consuming and often error-prone, which suggests the need for automatic ICD coding. However, despite the long history of automatic ICD coding, there have been no standardized frameworks for benchmarking ICD coding models. We open-source an easy-to-use tool named AnEMIC, which provides a streamlined pipeline for preprocessing, training, and evaluating for automatic ICD coding. We correct errors in preprocessing by existing works, and provide key models and weights trained on the correctly preprocessed datasets. We also provide an interactive demo performing real-time inference from custom inputs, and visualizations drawn from explainable AI to analyze the models. We hope the framework helps move the research of ICD coding forward and helps professionals explore the potential of ICD coding. The framework and the associated code are available here.

2.
Proc Mach Learn Res ; 174: 234-247, 2022 Apr.
Article in English | MEDLINE | ID: mdl-38665367

ABSTRACT

Spelling correction is a particularly important problem in clinical natural language processing because of the abundant occurrence of misspellings in medical records. However, the scarcity of labeled datasets in a clinical context makes it hard to build a machine learning system for such clinical spelling correction. In this work, we present a probabilistic model of correcting misspellings based on a simple conditional independence assumption, which leads to a modular decomposition into a language model and a corruption model. With a deep character-level language model trained on a large clinical corpus, and a simple edit-based corruption model, we can build a spelling correction model with small or no real data. Experimental results show that our model significantly outperforms baselines on two healthcare spelling correction datasets.

3.
Article in English | MEDLINE | ID: mdl-28983398

ABSTRACT

The Poisson distribution has been widely studied and used for modeling univariate count-valued data. Multivariate generalizations of the Poisson distribution that permit dependencies, however, have been far less popular. Yet, real-world high-dimensional count-valued data found in word counts, genomics, and crime statistics, for example, exhibit rich dependencies, and motivate the need for multivariate distributions that can appropriately model this data. We review multivariate distributions derived from the univariate Poisson, categorizing these models into three main classes: 1) where the marginal distributions are Poisson, 2) where the joint distribution is a mixture of independent multivariate Poisson distributions, and 3) where the node-conditional distributions are derived from the Poisson. We discuss the development of multiple instances of these classes and compare the models in terms of interpretability and theory. Then, we empirically compare multiple models from each class on three real-world datasets that have varying data characteristics from different domains, namely traffic accident data, biological next generation sequencing data, and text data. These empirical experiments develop intuition about the comparative advantages and disadvantages of each class of multivariate distribution that was derived from the Poisson. Finally, we suggest new research directions as explored in the subsequent discussion section.

4.
JMLR Workshop Conf Proc ; 54: 1514-1522, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28871272

ABSTRACT

Multiple Sequence Alignment (MSA) is one of the fundamental tasks in biological sequence analysis that underlies applications such as phylogenetic trees, profiles, and structure prediction. The task, however, is NP-hard, and the current practice resorts to heuristic and local-search methods. Recently, a convex optimization approach for MSA was proposed based on the concept of atomic norm [23], which demonstrates significant improvement over existing methods in the quality of alignments. However, the convex program is challenging to solve due to the constraint given by the intersection of two atomic-norm balls, for which the existing algorithm can only handle sequences of length up to 50, with an iteration complexity subject to constants of unknown relation to the natural parameters of MSA. In this work, we propose an accelerated dual decomposition algorithm that exploits entropy regularization to induce closed-form solutions for each atomic-norm-constrained subproblem, giving a single-loop algorithm of iteration complexity linear to the problem size (total length of all sequences). The proposed algorithm gives significantly better alignments than existing methods on sequences of length up to hundreds, where the existing convex programming method fails to converge in one day.

5.
JMLR Workshop Conf Proc ; 54: 1550-1559, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28871273

ABSTRACT

Maximum-a-Posteriori (MAP) inference lies at the heart of Graphical Models and Structured Prediction. Despite the intractability of exact MAP inference, approximate methods based on LP relaxations have exhibited superior performance across a wide range of applications. Yet for problems involving large output domains (i.e., the state space for each variable is large), standard LP relaxations can easily give rise to a large number of variables and constraints which are beyond the limit of existing optimization algorithms. In this paper, we introduce an effective MAP inference method for problems with large output domains. The method builds upon alternating minimization of an Augmented Lagrangian that exploits the sparsity of messages through greedy optimization techniques. A key feature of our greedy approach is to introduce variables in an on-demand manner with a pre-built data structure over local factors. This results in a single-loop algorithm of sublinear cost per iteration and O(log(1/ε))-type iteration complexity to achieve ε sub-optimality. In addition, we introduce a variant of GDMM for binary MAP inference problems with a large number of factors. Empirically, the proposed algorithms demonstrate orders of magnitude speedup over state-of-the-art MAP inference techniques on MAP inference problems including Segmentation, Protein Folding, Graph Matching, and Multilabel prediction with pairwise interaction.

6.
Inverse Probl ; 33(3)2017 Mar.
Article in English | MEDLINE | ID: mdl-28855745

ABSTRACT

We introduce a reconstruction framework that can account for shape related a priori information in ill-posed linear inverse problems in imaging. It is a variational scheme that uses a shape functional defined using deformable templates machinery from shape theory. As proof of concept, we apply the proposed shape based reconstruction to 2D tomography with very sparse measurements, and demonstrate strong empirical results.

7.
Adv Neural Inf Process Syst ; 30: 4446-4456, 2017 Dec.
Article in English | MEDLINE | ID: mdl-30867622

ABSTRACT

Non-parametric multivariate density estimation faces strong statistical and computational bottlenecks, and the more practical approaches impose near-parametric assumptions on the form of the density functions. In this paper, we leverage recent developments to propose a class of non-parametric models which have very attractive computational and statistical properties. Our approach relies on the simple function space assumption that the conditional distribution of each variable conditioned on the other variables has a non-parametric exponential family form.

8.
Proc Mach Learn Res ; 70: 3949-3957, 2017 Aug.
Article in English | MEDLINE | ID: mdl-31225526

ABSTRACT

The latent feature model (LFM), proposed in (Griffiths & Ghahramani, 2005), but possibly with earlier origins, is a generalization of a mixture model, where each instance is generated not from a single latent class but from a combination of latent features. Thus, each instance has an associated latent binary feature incidence vector indicating the presence or absence of a feature. Due to its combinatorial nature, inference of LFMs is considerably intractable, and accordingly, most of the attention has focused on nonparametric LFMs, with priors such as the Indian Buffet Process (IBP) on infinite binary matrices. Recent efforts to tackle this complexity either still have computational complexity that is exponential, or sample complexity that is high-order polynomial w.r.t. the number of latent features. In this paper, we address this outstanding problem of tractable estimation of LFMs via a novel atomic-norm regularization, which gives an algorithm with polynomial run-time and sample complexity without impractical assumptions on the data distribution.

9.
BMC Syst Biol ; 10 Suppl 3: 69, 2016 08 26.
Article in English | MEDLINE | ID: mdl-27586041

ABSTRACT

BACKGROUND: Technological advances in medicine have led to a rapid proliferation of high-throughput "omics" data. Tools to mine this data and discover disrupted disease networks are needed as they hold the key to understanding complicated interactions between genes, mutations and aberrations, and epi-genetic markers. RESULTS: We developed an R software package, XMRF, that can be used to fit Markov Networks to various types of high-throughput genomics data. Encoding the models and estimation techniques of the recently proposed exponential family Markov Random Fields (Yang et al., 2012), our software can be used to learn genetic networks from RNA-sequencing data (counts via Poisson graphical models), mutation and copy number variation data (categorical via Ising models), and methylation data (continuous via Gaussian graphical models). CONCLUSIONS: XMRF is the only tool that allows network structure learning using the native distribution of the data instead of the standard Gaussian. Moreover, the parallelization feature of the implemented algorithms computes the large-scale biological networks efficiently. XMRF is available from CRAN and Github ( https://github.com/zhandong/XMRF ).


Subject(s)
Genomics , High-Throughput Nucleotide Sequencing , Markov Chains , Sequence Analysis, RNA , Software , Statistics as Topic/methods , Computer Graphics , DNA Copy Number Variations , Mutation , Poisson Distribution
10.
JMLR Workshop Conf Proc ; 48: 2272-2280, 2016.
Article in English | MEDLINE | ID: mdl-27559428

ABSTRACT

Multiple Sequence Alignment and Motif Discovery, known as NP-hard problems, are two fundamental tasks in Bioinformatics. Existing approaches to these two problems are based on either local search methods such as Expectation Maximization (EM), Gibbs Sampling or greedy heuristic methods. In this work, we develop a convex relaxation approach to both problems based on the recent concept of atomic norm and develop a new algorithm, termed Greedy Direction Method of Multiplier, for solving the convex relaxation with two convex atomic constraints. Experiments show that our convex relaxation approach produces solutions of higher quality than those standard tools widely-used in Bioinformatics community on the Multiple Sequence Alignment and Motif Discovery problems.

11.
JMLR Workshop Conf Proc ; 48: 2445-2453, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27563373

ABSTRACT

We develop Square Root Graphical Models (SQR), a novel class of parametric graphical models that provides multivariate generalizations of univariate exponential family distributions. Previous multivariate graphical models (Yang et al., 2015) did not allow positive dependencies for the exponential and Poisson generalizations. However, in many real-world datasets, variables clearly have positive dependencies. For example, the airport delay time in New York-modeled as an exponential distribution-is positively related to the delay time in Boston. With this motivation, we give an example of our model class derived from the univariate exponential distribution that allows for almost arbitrary positive and negative dependencies with only a mild condition on the parameter matrix-a condition akin to the positive definiteness of the Gaussian covariance matrix. Our Poisson generalization allows for both positive and negative dependencies without any constraints on the parameter values. We also develop parameter estimation methods using node-wise regressions with ℓ1 regularization and likelihood approximation methods using sampling. Finally, we demonstrate our exponential generalization on a synthetic dataset and a real-world dataset of airport delay times.

12.
Adv Neural Inf Process Syst ; 29: 5030-5038, 2016 Dec.
Article in English | MEDLINE | ID: mdl-29657512

ABSTRACT

Many applications of machine learning involve structured outputs with large domains, where learning of a structured predictor is prohibitive due to repetitive calls to an expensive inference oracle. In this work, we show that by decomposing training of a Structural Support Vector Machine (SVM) into a series of multiclass SVM problems connected through messages, one can replace an expensive structured oracle with Factorwise Maximization Oracles (FMOs) that allow efficient implementation of complexity sublinear to the factor domain. A Greedy Direction Method of Multiplier (GDMM) algorithm is then proposed to exploit the sparsity of messages while guarantees convergence to ε sub-optimality after O(log(1/ε)) passes of FMOs over every factor. We conduct experiments on chain-structured and fully-connected problems of large output domains, where the proposed approach is orders-of-magnitude faster than current state-of-the-art algorithms for training Structural SVMs.

13.
Adv Neural Inf Process Syst ; 28: 2197-2205, 2015 Dec.
Article in English | MEDLINE | ID: mdl-27563230

ABSTRACT

We consider the problem of high-dimensional structured estimation with norm-regularized estimators, such as Lasso, when the design matrix and noise are drawn from sub-exponential distributions. Existing results only consider sub-Gaussian designs and noise, and both the sample complexity and non-asymptotic estimation error have been shown to depend on the Gaussian width of suitable sets. In contrast, for the sub-exponential setting, we show that the sample complexity and the estimation error will depend on the exponential width of the corresponding sets, and the analysis holds for any norm. Further, using generic chaining, we show that the exponential width for any set will be at most [Formula: see text] times the Gaussian width of the set, yielding Gaussian width based results even for the sub-exponential case. Further, for certain popular estimators, viz Lasso and Group Lasso, using a VC-dimension based analysis, we show that the sample complexity will in fact be the same order as Gaussian designs. Our general analysis and results are the first in the sub-exponential setting, and are readily applicable to special sub-exponential families such as log-concave and extreme-value distributions.

14.
J Mach Learn Res ; 16: 3813-3847, 2015 Dec.
Article in English | MEDLINE | ID: mdl-27570498

ABSTRACT

Undirected graphical models, or Markov networks, are a popular class of statistical models, used in a wide variety of applications. Popular instances of this class include Gaussian graphical models and Ising models. In many settings, however, it might not be clear which subclass of graphical models to use, particularly for non-Gaussian and non-categorical data. In this paper, we consider a general sub-class of graphical models where the node-wise conditional distributions arise from exponential families. This allows us to derive multivariate graphical model distributions from univariate exponential family distributions, such as the Poisson, negative binomial, and exponential distributions. Our key contributions include a class of M-estimators to fit these graphical model distributions; and rigorous statistical analysis showing that these M-estimators recover the true graphical model structure exactly, with high probability. We provide examples of genomic and proteomic networks learned via instances of our class of graphical models derived from Poisson and exponential distributions.

15.
PLoS One ; 9(12): e114608, 2014.
Article in English | MEDLINE | ID: mdl-25502413

ABSTRACT

A widely studied problem in systems biology is to predict bacterial phenotype from growth conditions, using mechanistic models such as flux balance analysis (FBA). However, the inverse prediction of growth conditions from phenotype is rarely considered. Here we develop a computational framework to carry out this inverse prediction on a computational model of bacterial metabolism. We use FBA to calculate bacterial phenotypes from growth conditions in E. coli, and then we assess how accurately we can predict the original growth conditions from the phenotypes. Prediction is carried out via regularized multinomial regression. Our analysis provides several important physiological and statistical insights. First, we show that by analyzing metabolic end products we can consistently predict growth conditions. Second, prediction is reliable even in the presence of small amounts of impurities. Third, flux through a relatively small number of reactions per growth source (∼10) is sufficient for accurate prediction. Fourth, combining the predictions from two separate models, one trained only on carbon sources and one only on nitrogen sources, performs better than models trained to perform joint prediction. Finally, that separate predictions perform better than a more sophisticated joint prediction scheme suggests that carbon and nitrogen utilization pathways, despite jointly affecting cellular growth, may be fairly decoupled in terms of their dependence on specific assortments of molecular precursors.


Subject(s)
Computer Simulation , Escherichia coli/growth & development , Escherichia coli/metabolism , Metabolic Flux Analysis , Models, Biological , Carbon/metabolism , Escherichia coli/cytology , Nitrogen/metabolism
16.
Ann Appl Stat ; 5(2B): 1159-1182, 2011 Jun.
Article in English | MEDLINE | ID: mdl-22523529

ABSTRACT

Functional MRI (fMRI) has become the most common method for investigating the human brain. However, fMRI data present some complications for statistical analysis and modeling. One recently developed approach to these data focuses on estimation of computational encoding models that describe how stimuli are transformed into brain activity measured in individual voxels. Here we aim at building encoding models for fMRI signals recorded in the primary visual cortex of the human brain. We use residual analyses to reveal systematic nonlinearity across voxels not taken into account by previous models. We then show how a sparse nonparametric method [bJ. Roy. Statist. Soc. Ser. B71 (2009b) 1009-1030] can be used together with correlation screening to estimate nonlinear encoding models effectively. Our approach produces encoding models that predict about 25% more accurately than models estimated using other methods [Nature452 (2008a) 352-355]. The estimated nonlinearity impacts the inferred properties of individual voxels, and it has a plausible biological interpretation. One benefit of quantitative encoding models is that estimated models can be used to decode brain activity, in order to identify which specific image was seen by an observer. Encoding models estimated by our approach also improve such image identification by about 12% when the correct image is one of 11,500 possible images.

SELECTION OF CITATIONS
SEARCH DETAIL
...