Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 360: 121208, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38788413

ABSTRACT

Stability of soil organic carbon (SOC) is pre-requisite for stabilization of C leading to long-term C sequestration. However, development of a comprehensive metric of SOC stability is a major challenge. The objectives for the study were to develop novel SOC stability indices by encompassing physical, chemical, and biochemical SOC stability parameters and identifying the most important indicators from a Mollisol, an Inceptisol, a Vertisol, and an Alfisol under long-term manuring and fertilization. The treatments were control, 100%NPK, 50% NPK+ 50% N through either farmyard manure, cereal residue, or green manure. SOC stability indicators were selected, transformed and integrated into unique SOC stability indices via conceptual framework and principal component analysis. Principal component analysis identified Al-macroaggregate, humic acid C-microaggregate, microaggregate-C, particulate organic matter-C-macroaggregate and polyphenol-microaggregate as the important SOC stability indicators. The principal component analysis -based SOC stability index varied from 0.2 to 0.9, 0.1 to 0.5, 0.2 to 0.6, 0.1 to 0.5 for Mollisol, Inceptisol, Vertisol and Alfisol, respectively. The SOC-stability index derived from conceptual framework and principal component analysis significantly lined up well with one another, although NaOCl-Res-C showed a high correlation with both conceptual framework (r = 0.8) and principal component analysis-based (r = 0.7) SOC stability indexes, suggesting that both methods might be used to quickly assess SOC stability in four soil orders. Overall, 50%NPK+50%N by farmyard manure or green manure emerged as the most effective management practices for enhancing stability of SOC in Mollisol, Inceptisol, Vertisol, and Alfisol of India which might act as major C sink in rice-wheat and maize-wheat cropping systems. The other aspect of C sequestration is to enhance agricultural productivity without depending much on expensive chemical fertilizers. The model yardstick thus developed for assessing SOC stability might be useful to other systems as well.


Subject(s)
Carbon , Soil , Soil/chemistry , Carbon/analysis , India , Fertilizers/analysis , Manure , Agriculture , Principal Component Analysis , Nitrogen/analysis , Carbon Sequestration , Humic Substances/analysis
2.
Front Nutr ; 11: 1264658, 2024.
Article in English | MEDLINE | ID: mdl-38406187

ABSTRACT

Introduction: Over the years, smallholder farmers have faced more vulnerability to risk and uncertainty in India due to their dependence on cereal crops. One way to reduce this risk is through diversified agriculture, integrating different practices for efficient resource utilization, and adopting a farming systems approach. An integrated farming system (IFS) is one such technique that provides year-round income from different components of enterprises. However, the decision to adopt IFS may be determined by several characteristics of farmers, which needs to be delineated through impact analysis to harness the benefits of a systems approach. Methods: This study analyzes the economic effects of integrated farming systems and assesses their determinants, as well as the dietary diversity patterns of farmers in two states of southern India, i.e., Kerala and Tamil Nadu. A multistage sampling technique was used to obtain cross-sectional data from 367 farmers randomly chosen from one district in Kerala and two districts in Tamil Nadu. The participants have Crop + Horticulture + Animal husbandry (45.45%) as their major system, whereas non-participants have Crop + Animal husbandry (44.35%) as their predominant system. Coarsened exact matching and logit regression methods were used to evaluate the economic impacts of IFS and its influencing factors. Results: The findings of the study indicate that age, education, livestock holding, access to credit, and plantation area have a positive and significant effect on participation by farmers in the program. The matching results show that adoption of IFS resulted in a significant economic impact, generating an additional gross income of Rs. 36,165 ha-1 and a net income of Rs. 35,852 ha-1 and improving the dietary diversity of farm households by 8.6% as compared to non-adopters. Discussion: This study suggests that IFS is a promising approach for improving farmers' livelihoods, economic gains, and nutritional security. Therefore, the integrated farming systems models need to be upscaled through the convergence of government schemes in other regions of India to support smallholder farmers' farming.

3.
Front Nutr ; 10: 1198023, 2023.
Article in English | MEDLINE | ID: mdl-37469543

ABSTRACT

Introduction: Millets are nutritionally superior and climate-resilient short-duration crops and hold a prominent place in cropping sequences around the world. They have immense potential to grow in a marginal environment due to diverse adaptive mechanisms. Methods: An experiment was conducted in an organic production system in the North Eastern Himalayan foothills of India for 3 consecutive years by evaluating high-yielding varieties (HYVs) of different millets, viz., finger millet, foxtail millet, little millet, barnyard millet, proso millet, and browntop millet, along with local landraces of finger millets (Sikkim-1 and Sikkim-2; Nagaland-1 and Nagaland-2) to identify stable, high-yielding, and nutritionally superior genotypes suited for the region. Results: Among the various millets, finger millet, followed by little millet and foxtail millet, proved their superiority in terms of productivity (ranging between 1.16 and 1.43 Mg ha-1) compared to other millets. Among different varieties of finger millets, cv. VL Mandua 352 recorded the highest average grain yield (1.43 Mg ha-1) followed by local landraces, Nagaland-2 (1.31 Mg ha-1) and Sikkim-1 (1.25 Mg ha-1). Root traits such as total root length, root volume, average diameter of roots, and root surface area were significantly higher in finger millet landraces Nagaland-1, Nagaland-2, and Sikkim-1 compared to the rest of the millet genotypes. The different millets were found to be rich sources of protein as recorded in foxtail millet cv. SiA 3088 (12.3%), proso millet cv. TNAU 145 (11.5%), and finger millet landraces, Sikkim-1 and Nagaland-2 (8.7% each). Finger millet landrace Sikkim-2 recorded the highest omega-6 content (1.16%), followed by barnyard millet cv. VL 207 (1.09%). Barnyard millet cv. VL 207 recorded the highest polyunsaturated fatty acid (PUFA) content (1.23%), followed by foxtail millet cv. SiA 3088 (1.09%). The local finger millet landraces Sikkim-1 and Sikkim-2 recorded the highest levels of histidine (0.41%) and tryptophan (0.12%), respectively. Sikkim-1 and Nagaland-2 recorded the highest level of thiamine (0.32%) compared to the HYVs. Conclusion: These findings indicate that finger millet has great potential in the organic production system of the North Eastern Himalayan Region (NEHR) of India, and apart from HYVs like VL Mandua 352, local landraces, viz., Nagaland-2 and Sikkim-1, should also be promoted for ensuring food and nutritional security in this fragile ecosystem.

4.
World J Microbiol Biotechnol ; 38(7): 111, 2022 May 16.
Article in English | MEDLINE | ID: mdl-35570214

ABSTRACT

Beejamrit is an ancient organic formulation commonly used as a seed treatment in organic and natural farming in India. This low-cost formulation is primarily a product of dairy excreta (e.g., cow dung and cow urine) and forest soil, often supplemented with limestone. Growing data suggest that dairy excreta are the potential sources of enriched microbial niche, including several plant growth-promoting bacteria capable of synthesizing plant growth regulators. However, the microbiological properties of Beejamrit and their temporal changes after different incubation periods, delineating its application in seed treatment, remain largely unexplored. Here, we aimed to analyze the decomposition rate of Beejamrit over 7-consecutive days of incubation. This study further elucidates the microbial niche and their dynamics in Beejamrit, including the plant beneficial bacteria. We have shown that the population of plant beneficial bacteria, such as the free-living nitrogen fixers (FNFs) and the phosphate solubilizers (PSBs), proliferates progressively up to 4- and 5-days of incubation, respectively (p < 0.0001). This study also reports the total indolic content of Beejamrit, including indole 3-acetic acid (IAA), which further tends to oscillate in concentration based on the incubation periods incurred during the Beejamrit preparation. Our analyses, together, establish that Beejamrit provides a dynamic, microbe-based metabolic network and may, therefore, act as a plant biostimulant to crop plants. A plant-based bioassay finally demonstrates the role of Beejamrit in the seed treatment to improve seed germination, seedling survival rate, and shoot length trait in French beans (p < 0.01). In conclusion, this study highlights, for the first time, the scientific insights of Beejamrit as a potential seed priming agent in agriculture.


Subject(s)
Germination , Plant Development , Bacteria , Plants , Seeds/microbiology , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL