Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
PLoS One ; 19(4): e0293861, 2024.
Article in English | MEDLINE | ID: mdl-38603714

ABSTRACT

The goal of this study was to characterize the bacterial diversity on different melon varieties grown in different regions of the US, and determine the influence that region, rind netting, and variety of melon has on the composition of the melon microbiome. Assessing the bacterial diversity of the microbiome on the melon rind can identify antagonistic and protagonistic bacteria for foodborne pathogens and spoilage organisms to improve melon safety, prolong shelf-life, and/or improve overall plant health. Bacterial community composition of melons (n = 603) grown in seven locations over a four-year period were used for 16S rRNA gene amplicon sequencing and analysis to identify bacterial diversity and constituents. Statistically significant differences in alpha diversity based on the rind netting and growing region (p < 0.01) were found among the melon samples. Principal Coordinate Analysis based on the Bray-Curtis dissimilarity distance matrix found that the melon bacterial communities clustered more by region rather than melon variety (R2 value: 0.09 & R2 value: 0.02 respectively). Taxonomic profiling among the growing regions found Enterobacteriaceae, Bacillaceae, Microbacteriaceae, and Pseudomonadaceae present on the different melon rinds at an abundance of ≥ 0.1%, but no specific core microbiome was found for netted melons. However, a core of Pseudomonadaceae, Bacillaceae, and Exiguobacteraceae were found for non-netted melons. The results of this study indicate that bacterial diversity is driven more by the region that the melons were grown in compared to rind netting or melon type. Establishing the foundation for regional differences could improve melon safety, shelf-life, and quality as well as the consumers' health.


Subject(s)
Bacillaceae , Cucumis melo , Cucurbitaceae , United States , Cucurbitaceae/microbiology , Cucumis melo/microbiology , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Enterobacteriaceae
2.
Microbiology (Reading) ; 168(11)2022 11.
Article in English | MEDLINE | ID: mdl-36342839

ABSTRACT

Tailocins are ribosomally synthesized bacteriocins, encoded by bacterial genomes, but originally derived from bacteriophage tails. As with both bacteriocins and phage, tailocins are largely thought to be species-specific with killing activity often assumed to be directed against closely related strains. Previous investigations into interactions between tailocin host range and sensitivity across phylogenetically diverse isolates of the phytopathogen Pseudomonas syringae have demonstrated that many strains possess intraspecific tailocin activity and that this activity is highly precise and specific against subsets of strains. However, here we demonstrate that at least one strain of P. syringae, USA011R, defies both expectations and current overarching dogma because tailocins from this strain possess broad killing activity against other agriculturally significant phytopathogens such as Erwinia amylovora and Xanthomonas perforans as well as against the clinical human pathogen Salmonella enterica serovar Choleraesuis. Moreover, we show that the full spectrum of this interspecific killing activity is not conserved across closely related strains with data suggesting that even if tailocins can target different species, they do so with different efficiencies. Our results reported herein highlight the potential for and phenotypic divergence of interspecific killing activity of P. syringae tailocins and establish a platform for further investigations into the evolution of tailocin host range and strain specificity.


Subject(s)
Bacteriocins , Bacteriophages , Xanthomonas , Bacteriocins/pharmacology , Bacteriocins/genetics , Genome, Bacterial , Plant Diseases , Pseudomonas syringae/genetics
3.
Molecules ; 27(19)2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36235235

ABSTRACT

The objective of this study was to investigate the antimicrobial activities of essential oil-based microemulsions in the wash water against Escherichia coli O157:H7 and Pseudomonas fluorescens on Iceberg lettuce. Evaluated wash microemulsions included oregano oil, lemongrass oil, and cinnamon oil, along with a plant-based emulsifier for improved solubility. Iceberg lettuce was inoculated for 2 min with E. coli O157:H7 (6.0 log CFU/g) or P. fluorescens (6.0 log CFU/g) and then dip-treated in a phosphate buffered saline (PBS) control, 50 ppm chlorine, 3% hydrogen peroxide treatment or a 0.1%, 0.3%, or 0.5% microemulsion solution. Treated leaves were stored at 4 °C, and analyzed for surviving bacteria on days 0, 3, 7, 10, 14, 21, and 28. Efficacies of the antimicrobials were concentration and storage-time dependent. There was a 1.26−4.86 log CFU/g reduction in E. coli O157:H7 and significant reductions (0.32−2.35 log CFU/g) in P. fluorescens during storage at days 0−28 (p < 0.05). The 0.1% oregano oil microemulsion resulted in the best visual appeal in Iceberg leaves inoculated with E. coli O157:H7 and showed better improvement in the quality of the Iceberg leaves inoculated with spoilage bacteria P. fluorescens. The results suggest that 0.5% cinnamon and 0.3% oregano oil treatments have the potential to provide natural, eco-friendly, and effective alternatives to chemicals for the decontamination of leafy greens, eliminating E. coli O157:H7 and P. fluorescens.


Subject(s)
Anti-Infective Agents , Escherichia coli O157 , Oils, Volatile , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Chlorine , Colony Count, Microbial , Food Contamination/analysis , Food Handling/methods , Food Microbiology , Hydrogen Peroxide/pharmacology , Lactuca/microbiology , Oils, Volatile/pharmacology , Phosphates/pharmacology , Water/pharmacology
4.
Environ Sci Technol ; 56(21): 15019-15033, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36194536

ABSTRACT

Reduced availability of agricultural water has spurred increased interest in using recycled irrigation water for U.S. food crop production. However, there are significant knowledge gaps concerning the microbiological quality of these water sources. To address these gaps, we used 16S rRNA gene and metagenomic sequencing to characterize taxonomic and functional variations (e.g., antimicrobial resistance) in bacterial communities across diverse recycled and surface water irrigation sources. We collected 1 L water samples (n = 410) between 2016 and 2018 from the Mid-Atlantic (12 sites) and Southwest (10 sites) U.S. Samples were filtered, and DNA was extracted. The V3-V4 regions of the 16S rRNA gene were then PCR amplified and sequenced. Metagenomic sequencing was also performed to characterize antibiotic, metal, and biocide resistance genes. Bacterial alpha and beta diversities were significantly different (p < 0.001) across water types and seasons. Pathogenic bacteria, such as Salmonella enterica, Staphylococcus aureus, and Aeromonas hydrophilia were observed across sample types. The most common antibiotic resistance genes identified coded against macrolides/lincosamides/streptogramins, aminoglycosides, rifampin and elfamycins, and their read counts fluctuated across seasons. We also observed multi-metal and multi-biocide resistance across all water types. To our knowledge, this is the most comprehensive longitudinal study to date of U.S. recycled water and surface water used for irrigation. Our findings improve understanding of the potential differences in the risk of exposure to bacterial pathogens and antibiotic resistance genes originating from diverse irrigation water sources across seasons and U.S. regions.


Subject(s)
Anti-Bacterial Agents , Disinfectants , United States , RNA, Ribosomal, 16S/genetics , Anti-Bacterial Agents/pharmacology , Longitudinal Studies , Bacteria/genetics , Drug Resistance, Microbial/genetics , Water , Agricultural Irrigation , Wastewater , Genes, Bacterial
5.
Food Microbiol ; 101: 103876, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34579844

ABSTRACT

The efficacy of plant-based antimicrobials against Salmonella Newport and Listeria monocytogenes on melon rinds was evaluated. Four cantaloupe and 3 honeydew melon varieties grown in Georgia, Arizona, Texas, North Carolina, Indiana and California were tested. Melon rinds (10 g pieces) were inoculated with 5-6 log CFU/10 g rind of S. Newport or L. monocytogenes. Samples were then immersed in 5 % olive extract or 0.5 % oregano oil antimicrobial solution and gently agitated for 2 min. Samples were stored at 4 °C and surviving populations of both bacteria were enumerated at days 0 and 3. Plant-based antimicrobials reduced S. Newport and L.monocytogenes population on all rind samples, regardless of the melon types, varieties or growing locations. Compared to the control, antimicrobial treatments caused up to 3.6 and 4.0 log reductions in populations of Salmonella and L. monocytogenes, respectively. In most cases, plant-based antimicrobial treatments reduced pathogen populations to below the detection limit (1 log CFU/g) at day 3. In general, oregano oil had better antimicrobial activity than olive extract and the antimicrobial treatments were more effective on Salmonella than on L. monocytogenes. The plant-based antimicrobial treatments exhibited better microbial reductions on honeydews than on cantaloupes. These antimicrobials could potentially be used as sanitizers for decontaminating melons.


Subject(s)
Anti-Infective Agents , Cucurbitaceae , Food Contamination/prevention & control , Listeria monocytogenes , Salmonella enterica , Anti-Infective Agents/pharmacology , Colony Count, Microbial , Consumer Product Safety , Cucurbitaceae/microbiology , Food Handling , Food Microbiology , Listeria monocytogenes/drug effects , Salmonella enterica/drug effects , United States
6.
Article in English | MEDLINE | ID: mdl-33255193

ABSTRACT

In the US Southwest, it is common to observe birds in leafy green fields, though the risk they contribute to foodborne outbreaks remains unclear. In this study, we investigated and recorded the relationship between birds near leafy green fields and the risk for contaminated irrigation water or leafy green plants. We monitored the presence of birds for over two years and performed cloacal swab analysis for non-pathogenic Escherichia coli, E. coli O157:H7 and Salmonellaenterica, while also monitoring the incidence of other microbial indicators. We also assessed the risks from bird feces by performing observations in a commercial field reported with Salmonella positive samples and by analyzing the survival of foodborne pathogens in bird feces. Our results showed that most of the birds near the crop fields were resident small birds. We did not observe a correlation between the number of birds in sites and the incidence of indicator bacteria (e.g., coliforms, E. coli) in irrigation canal water, with the exception of one out of four sites where water flow was low or stagnant. Using walk-in-traps, 305 birds were captured and placed in short-term captivity to determine the presence of various bacteria. None of the birds tested positive for E. coli O157:H7 or Salmonella. However, nearly 40% of the birds captured were confirmed positive for non-pathogenic E. coli. We found no correlation between age (young, adult, unknown), gender (male, female, unknown) and the incidence of E. coli positive birds, but we observed significantly higher probability of incidence during October-December. The role of relative humidity and temperature on bacterial survival appeared to play a key role in the survival of Salmonella on the leaves of spinach plants in a commercial field. This was also confirmed in laboratory conditions where Salmonella inoculated in bird feces and exposed to 15 °C and 80% RH(Relative humidity) survived beyond 133 days, while at 26 °C and 40% RH, the organism was undetectable after 63 days. Our results suggest that local birds associated with leafy green fields likely pose a minimal impact of risk for food contamination, but also points out the need for increased analysis specifically for E. coli O157:H7. Furthermore, our study suggests the need for expanding research that addresses risks associated with large migratory birds, especially in areas where stagnated water sources would be used for overhead sprinkle irrigation.


Subject(s)
Bacterial Physiological Phenomena , Birds , Food Microbiology , Food Safety , Plant Leaves/microbiology , Agriculture , Animals , Bacterial Load , Birds/microbiology , Colony Count, Microbial , Feces/microbiology , Food Microbiology/statistics & numerical data , Humidity , Risk Assessment , Southwestern United States , Spinacia oleracea/microbiology , Temperature , Water Microbiology
7.
Plants (Basel) ; 9(9)2020 Aug 19.
Article in English | MEDLINE | ID: mdl-32824999

ABSTRACT

Cantaloupe is a good dietary source of amino acids, including γ-aminobutyric acid (GABA), glutamine, and citrulline. However, the levels of these amino acids vary among different cantaloupe varieties grown in different locations. Understanding the variation in amino acid contents provides fundamentally important information for quality control and improving melon varieties. To examine this variation, we measured the amino acid contents in cantaloupes grown in six locations in the United States (Texas, Georgia, North Carolina, California, Indiana, and Arizona). Principal component analyses were applied to analyze the effect of growing location on the amino acid profiles in different varieties. The GABA content ranged from 1006.14 ± 64.77 to 3187.12 ± 64.96 µg/g and citrulline ranged from 92.65 ± 9.52 to 464.75 ± 34.97 µg/g depending on the variety and location. Total phenolic contents, α-amylase inhibition, and antioxidant activities were also measured. Tuscan type Da Vinci had significantly higher phenolic contents in Arizona (381.99 ± 16.21 µg/g) but had the lowest level when grown in California (224.56 ± 14.62 µg/g). Our analyses showed significant differences in amino acid levels, phenolics contents, and antioxidant activity in the cantaloupe varieties based on the growing location. These findings underline the importance of considering growing location in the selection and improvement of cantaloupe varieties.

8.
Int J Food Microbiol ; 326: 108646, 2020 Aug 02.
Article in English | MEDLINE | ID: mdl-32413802

ABSTRACT

The effects of using contaminated seed and water on the persistence and internalization of Salmonella Newport in organic spinach cultivars- Lazio, Space, Emilia and Waitiki were studied. Seeds were contaminated by either immersing in a suspension of Salmonella and then sprouted or were sprouted in Salmonella contaminated water in the dark at 25 °C. After 5 days, germinated sprouts were analyzed for S. Newport population and internalization. Germinated sprouts were potted in soil and grown in a plant incubator for 4 weeks. Leaves, stems and roots were sampled for Salmonella population by plating on CHROMagar™. Plants surface-sterilized with chlorine were analyzed for internalized pathogen. Potting soil and water runoff were sampled for Salmonella after 4 weeks of plant growth. Contaminated seeds and irrigation water had S. Newport populations of 7.64±0.43 log CFU/g and 7.12±0.04 log CFU/ml, respectively. Sprouts germinated using contaminated water or seeds had S. Newport populations of 8.09±0.04 and 8.08±0.03 log CFU/g, respectively and had a Salmonella population that was significantly higher than other spinach tissues (P<0.05). Populations of S. Newport in leaves, stem and roots of spinach plants were as follows: contaminated seed- 2.82±1.69, 1.69±0.86, and 4.41±0.62 log CFU/ml; contaminated water- 3.56±0.90, 3.04±0.31, and 4.03±0.42 log CFU/ml of macerated tissue suspension, respectively. Internalization was observed in plants developing from contaminated seeds and in sprouts germinated using contaminated water. S. Newport populations of 2.82±0.70 log CFU/g and 1.76±0.46 log CFU/ml were recovered from soil and water runoff, respectively. The results indicate that contamination of spinach during germination can result in persistence, internalization and environmental reintroduction of Salmonella.


Subject(s)
Food Contamination/analysis , Plant Leaves/microbiology , Salmonella enterica/isolation & purification , Seeds/microbiology , Spinacia oleracea/microbiology , Colony Count, Microbial , Food Microbiology , Germination , Plant Roots/microbiology , Seeds/growth & development , Soil Microbiology , Spinacia oleracea/growth & development
9.
Food Sci Nutr ; 8(1): 332-339, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31993159

ABSTRACT

Agaricus blazei Murill (ABM), a medicinal mushroom, has beneficial effects on various human metabolic diseases. The objective of this research was to evaluate the antioxidant and antidiabetic properties of ABM extracts (ethanol extract and ethyl acetate extract). The antioxidant activities of ABM ethanol extract (EE) and ethyl acetate extract (EA) were analyzed using 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and hydroxyl radical scavenging assays and the reducing power using K3Fe(CN)6 in vitro. Moreover, the effects of EE and EA on α-glucosidase inhibitory activity and improving glucose uptake by HepG2 cells were investigated in vitro. The EA showed stronger antioxidant activity, as well as inhibition of α-glucosidase, compared to EE. The analysis of glucose uptake by HepG2 cells showed that EA had significant glucose-lowering activity and exhibited no difference compared to metformin. The results suggest that ABM extracts could improve the glucose uptake by HepG2 cells and thereby alleviate postprandial hyperglycemia. This investigation provides a strong rationale for further studies on the application of ABM to control type 2 diabetes.

10.
Environ Res ; 174: 1-8, 2019 07.
Article in English | MEDLINE | ID: mdl-31015109

ABSTRACT

Agricultural water withdrawals account for the largest proportion of global freshwater use. Increasing municipal water demands and droughts are straining agricultural water supplies. Therefore, alternative solutions to agricultural water crises are urgently needed, including the use of nontraditional water sources such as advanced treated wastewater or reclaimed water, brackish water, return flows, and effluent from produce processing facilities. However, it is critical to ensure that such usage does not compromise soil, crop, and public health. Here, we characterized five different nontraditional water types (n = 357 samples) for the presence of pharmaceuticals, herbicides, and disinfectants using ultra-high-pressure liquid chromatography tandem mass spectrometry based method (UPLC-MS/MS). We then evaluated whether the levels of these contaminants were influenced by season. The highest level of herbicides (atrazine) was detected in untreated pond water (median concentration 135.9 ng/L). Reclaimed water had the highest levels of antibiotics and stimulants including azithromycin (215 ng/L), sulfamethoxazole (232.1 ng/L), and caffeine (89.4 ng/L). Produce processing plant water also tended to have high levels of atrazine (102.7 ng/L) and ciprofloxacin (80.1 ng/L). In addition, we observed seasonal variability across water types, with the highest atrazine concentrations observed during summer months, while the highest median azithromycin concentrations were observed in reclaimed water during the winter season. Further studies are needed to evaluate if economically feasible on-farm water treatment technologies can effectively remove such contaminants from nontraditional irrigation water sources.


Subject(s)
Disinfectants/analysis , Herbicides/analysis , Pharmaceutical Preparations , Water Pollutants, Chemical/analysis , Chromatography, Liquid , Tandem Mass Spectrometry , Wastewater , Water
11.
Article in English | MEDLINE | ID: mdl-30821189

ABSTRACT

The efficacies of 11 plant-derived antimicrobials were evaluated against Escherichia coli in vitro in solution at room temperature. These included lemongrass, cinnamon, and oregano essential oils and their active components (citral, cinnamaldehyde, and carvacrol, respectively). Allspice and clove bud oils and olive, green tea, and grape seed extracts were also studied. The efficacies of the antimicrobials were both concentration- and exposure time-dependent. The essential oils and their active components demonstrated statistically significant >5.0-log10 reductions within 1-10 min. The plant extracts were less effective; green tea and grape seed extracts required 24 h before significant reductions were observed (1.93-log10 and 5.05-log10, respectively). Nevertheless, olive extract exhibited a reduction of ∼5-log10 within 30 min. Most of these plant-derived compounds exhibited strong bactericidal activity and can potentially be applied as alternatives to chemicals for foods/food contact surfaces since they are generally recognized as safe (GRAS) for human consumption. They may also be useful in applications in which other antimicrobials have reduced efficacy (e.g., in the presence of organics) or used with sensitive populations that are unable to tolerate exposure to harsher chemicals (e.g., elderly care facilities). These compounds could be used alone, in combination, or with fast-acting antimicrobials to provide a long-lasting residual.


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Microbial Viability/drug effects , Oils, Volatile/pharmacology , Plant Extracts/pharmacology , Plant Oils/pharmacology , Aged , Anti-Bacterial Agents/chemistry , Dose-Response Relationship, Drug , Food Microbiology , Food Safety , Humans , Oils, Volatile/chemistry , Plant Extracts/chemistry , Plant Oils/chemistry , Time Factors
12.
J Food Prot ; 82(3): 454-462, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30794463

ABSTRACT

Contaminated coring tools may transfer bacteria to iceberg lettuce. The efficiency of coring tool design modifications in reducing bacterial transfer to lettuce heads was evaluated under simulated field operations. The standard coring tool consists of a stainless steel cylindrical tube welded to a tab that is inserted into a plastic handle. Design modifications included removal of the welded portion, incorporation of a shorter front straight bottom edge, or an angled bottom edge toward the front. In the first study, coring tools of four different designs were inoculated by dipping in a tryptic soy broth (TSB) suspension that contained 8.85 Log CFU/mL of Escherichia coli K-12 and then were used to core 100 lettuce heads, consecutively. Use of the standard tool resulted in 91% ± 9% positive lettuce heads. Removing the welded surface from the standard tool resulted in the highest reduction of E. coli transfer (44% ± 11.9% positive lettuce heads, P < 0.05), whereas incorporation of a short front straight edge with no welding resulted in 65.6% ± 5.6% of the cored lettuce heads being positive for E. coli. Removal of the welded surface resulted in a 40% decrease in E. coli contamination among the last 20 cored lettuce heads (81 to 100), which indicates that coring tool design modifications resulted in reduced cross-contamination. In the second study, the transfer of Salmonella to coring tools after their immersion in rinsing solutions was evaluated using imaging. The tools were dip inoculated for 2 min in water, water with lettuce extract, or TSB containing 7 Log CFU/mL bioluminescent Salmonella Newport; they were then imaged to observe spatial distribution of bacteria. There was greater retention and spatial distribution of Salmonella on the surface of tools immersed in water containing lettuce extract than in TSB and water. The results of the second study indicate that rinsing solutions that contain lettuce particulate and organic load could facilitate cross-contamination of Salmonella Newport to tool surfaces.


Subject(s)
Equipment Contamination/prevention & control , Food Contamination/prevention & control , Food Handling , Lactuca/microbiology , Colony Count, Microbial , Escherichia coli K12 , Escherichia coli O157 , Food Handling/instrumentation , Food Handling/methods , Food Microbiology
13.
Environ Res ; 171: 213-217, 2019 04.
Article in English | MEDLINE | ID: mdl-30682578

ABSTRACT

Post-harvest washing of produce is performed to remove physical debris and to lower microbial load. The use of ozone in combination with plant-based antimicrobials was evaluated as an alternative to conventional sanitizers such as chlorine. Plant based antimicrobials that were evaluated in combination with ozone included oregano oil, carvacrol, Quillaja saponin and olive extract. Ozone was dispersed in phosphate buffered saline (PBS), following which individual antimicrobials or their combinations were added. Iceberg lettuce leaves (10 g portions) inoculated with Salmonella enterica serotype Newport (6.5 ±â€¯1 log CFU/g) were added to the wash suspension. The leaves were tested for reduction in S. Newport population after 60, 90 and 120 min of treatment. Exposure to ozonized water for 120 min resulted in a 2.1 log CFU/g (p < 0.05) reduction in S. Newport population. The addition of 0.1% oregano oil to ozonized water resulted in 3 log CFU/g reduction after 120 min but a 4.1 log CFU/g reduction after 60 min, indicating that the antioxidant property of oregano oil might have diminished ozone activity and resuscitated injured S. Newport cells. The addition of 5% olive extract to ozonized water resulted in 4.2 log CFU/g reduction of S. Newport after 120 min (p < 0.05) of treatment. While 5% olive extract did not confer protection to S. Newport cells from ozone, 1% olive extract resulted in higher S. Newport survival after 120 min treatment than the 60 min treatment. The use of carvacrol (0.1%, 0.3% and 0.5%) in ozonized water reduced the pathogen population to below the limit of detection (10 CFU/g) (p < 0.05) which was in excess of 6 log CFU/g. These results indicate that the efficacy of ozone is compounded by the addition of certain plant-based antimicrobials when used at optimum concentrations. Ozone combined with plant antimicrobials could serve as an effective alternative to sanitizers currently used for washing and processing of produce.


Subject(s)
Anti-Infective Agents , Disinfectants , Food Microbiology , Lactuca/microbiology , Plant Leaves/microbiology , Salmonella enterica , Colony Count, Microbial , Water
14.
Environ Res ; 170: 122-127, 2019 03.
Article in English | MEDLINE | ID: mdl-30579985

ABSTRACT

The quality of irrigation water used to cultivate produce that is consumed raw is an important issue with regard to food safety. In this study, the microbiological quality of potential irrigation water sources in Arizona was evaluated by testing for the presence of indicator and pathogenic bacteria. Reclaimed water samples were collected from two wastewater treatment plants and return flow samples were collected from two drainage canals and one return flow pond. Standard membrane filtration methods were used for detection of indicator bacteria. Water samples (n = 28) were filtered through cellulose ester membrane filters and bacterial populations were enumerated by placing the filters on selective agar. For detection of pathogens (Salmonella enterica, Listeria monocytogenes and Shiga toxin-producing E. coli (STEC)), water samples were filtered through Modified Moore swabs and enriched in Universal Pre-enrichment Broth, followed by selective enrichment broth for each pathogen. The enriched broth was streaked onto agar media selective for each pathogen. Presumptive colonies were confirmed by PCR/real-time PCR. Among the 14 reclaimed water samples from two sites, the ranges of recovered populations of E. coli, total coliforms, and enterococci were 0-1.3, 0.5-8.3 × 103, and 0-5.5 CFU/100 mL, respectively. No L. monocytogenes, Salmonella or STEC were found. In the 13 return flow water samples from 3 sites, the ranges of recovered populations of E. coli, total coliforms and enterococci were 1.9-5.3 × 102, 6.5 × 102-9.1 × 104, and 2.9-3.7× 103 CFU/100 mL, respectively. All samples were negative for L. monocytogenes. One (7.1%) of the return flow samples was positive for E. coli O145. Nine (64.3%) of the samples were positive for Salmonella. Both real-time PCR and culture-based methods were used for the detection of Salmonella and L. monocytogenes, and the results from the two methods were comparable. The findings of this study provide evidence that irrigation waters in Arizona, including reclaimed water and return flows, could be potential sources of bacterial contamination of produce. Additional work is needed to evaluate whether bacteria present in irrigation water sources transfer to the edible portion of irrigated plants and are capable of persisting through post-harvest activities.


Subject(s)
Environmental Monitoring , Escherichia coli , Water Microbiology , Water Pollution/analysis , Arizona , Feces , Incidence
15.
J Food Sci ; 79(1): M61-6, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24460771

ABSTRACT

The objective of this study was to investigate the antimicrobial effects of carvacrol and cinnamaldehyde incorporated into apple, carrot, and hibiscus-based edible films against Salmonella Newport in bagged organic leafy greens. The leafy greens tested included organic Romaine and Iceberg lettuce, and mature and baby spinach. Each leafy green sample was washed, dip inoculated with S. Newport (107 CFU/mL), and dried. Each sample was put into a Ziploc® bag. Edible films pieces were put into the Ziploc bag and mixed well. The bags were sealed and stored at 4 °C. Samples were taken at days 0, 3, and 7 for enumeration of survivors. On all leafy greens, 3% carvacrol films showed the best bactericidal effects against Salmonella. All 3 types of 3% carvacrol films reduced the Salmonella population by 5 log10 CFU/g at day 0 and 1.5% carvacrol films reduced Salmonella by 1 to 4 log10 CFU/g at day 7. The films with 3% cinnamaldehyde showed 0.5 to 3 log reductions on different leafy greens at day 7. The films with 0.5% and 1.5% cinnamaldehyde and 0.5% carvacrol also showed varied reductions on different types of leafy greens. Edible films were the most effective against Salmonella on Iceberg lettuce. This study demonstrates the potential of edible films incorporated with carvacrol and cinnamaldehyde to inactivate S. Newport on organic leafy greens.


Subject(s)
Acrolein/analogs & derivatives , Anti-Infective Agents/pharmacology , Monoterpenes/pharmacology , Plant Extracts/pharmacology , Salmonella enterica/drug effects , Vegetables/chemistry , Acrolein/pharmacology , Consumer Product Safety , Cymenes , Daucus carota/chemistry , Food Contamination/prevention & control , Food Microbiology , Food Preservation , Hibiscus/chemistry , Lactuca/microbiology , Malus/chemistry , Spinacia oleracea/microbiology
16.
J Food Prot ; 76(11): 1829-37, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24215684

ABSTRACT

Similar to phytopathogens, human bacterial pathogens have been shown to colonize the plant phylloplane. In addition to environmental factors, such as temperature, UV, relative humidity, etc., the plant cultivar and, specifically, the leaf blade morphological characteristics may affect the persistence of enteropathogens on leafy greens. This study was conducted to evaluate the effect of cultivar-dependent leaf topography and the role of strain phenotypic characteristics on Escherichia coli O157:H7 persistence on organic spinach. Spinach cultivars Emilia, Lazio, Space, and Waitiki were experimentally inoculated with the foodborne E. coli O157:H7 isolate EDL933 and its isogenic mutants deficient in cellulose, curli, or both curli and cellulose production. Leaves of 6-week-old plants were inoculated with 6.5 log CFU per leaf in a biosafety level 2 growth chamber. At 0, 1, 7, and 14 days, E. coli O157:H7 populations were determined by plating on selective medium and verified by laser scanning confocal microscopy. Leaf morphology (blade roughness and stoma density) was evaluated by low-temperature and variable-pressure scanning electron microscopy. E. coli O157:H7 persistence on spinach was significantly affected by cultivar and strain phenotypic characteristics, specifically, the expression of curli. Leaf blade roughness and stoma density influenced the persistence of E. coli O157:H7 on spinach. Cultivar Waitiki, which had the greatest leaf roughness, supported significantly higher E. coli O157:H7 populations than the other cultivars. These two morphological characteristics of spinach cultivars should be taken into consideration in developing intervention strategies to enhance the microbial safety of leafy greens.


Subject(s)
Bacterial Adhesion/physiology , Escherichia coli O157/physiology , Food Contamination/analysis , Food Microbiology , Spinacia oleracea/microbiology , Colony Count, Microbial , Escherichia coli O157/growth & development , Humans , Plant Leaves/microbiology , Spinacia oleracea/classification , Spinacia oleracea/genetics , Temperature
17.
Int J Food Microbiol ; 166(1): 193-9, 2013 Aug 16.
Article in English | MEDLINE | ID: mdl-23911760

ABSTRACT

There is generally no kill-step when preparing salad vegetables, so there is a greater risk for foodborne illness from contaminated vegetables. Some essential oils have antimicrobial activities and could provide a natural way to reduce pathogens on fresh produce. The objective of this study was to investigate the antimicrobial activity of cinnamon oil wash against Salmonella enterica serotype Newport on organic leafy greens. Organic romaine and iceberg lettuce, and organic baby and mature spinach were inoculated with Salmonella Newport and then dip treated in a phosphate buffered saline (PBS) control and 3 different concentrations (0.1, 0.3, and 0.5% v/v) of cinnamon oil. The treatment time varied at either 1 or 2min, and storage temperature varied at either 4 or 8°C. Samples were collected at days 0, 1, and 3. For romaine and iceberg lettuce, S. Newport was not recovered on day 3 for 2min 0.3% and 0.5% cinnamon oil treatments. For mature spinach, S. Newport was not recovered by day 3 for the 2min 0.3% and 0.5% 4°C treatments. For baby spinach, there was no recovery of S. Newport by day 1 for all 0.5% treatments. Overall, the cinnamon oil treatments were concentration and time dependent with higher concentrations and longer treatment times providing the greatest reduction in S. Newport population on leafy greens. In addition, the treatments had a residual effect with the greatest reduction generally seen on the last day of sampling. Storage temperature did not have a significant effect on the reduction of S. Newport. Based on the results of this study, cinnamon oil has the potential to be used as a treatment option for washing organic baby and mature spinach, and iceberg and romaine lettuces.


Subject(s)
Anti-Infective Agents/pharmacology , Oils, Volatile/pharmacology , Salmonella enterica/drug effects , Vegetables/microbiology , Colony Count, Microbial , Food Handling , Lactuca/microbiology , Microbial Viability/drug effects , Plant Leaves/microbiology , Spinacia oleracea/microbiology , Temperature , Time Factors
18.
J Food Prot ; 76(7): 1264-9, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23834804

ABSTRACT

Salmonella enterica is a predominant foodborne pathogen that causes diarrheal illness worldwide. A potential method of inhibiting pathogenic bacterial growth in meat is through the introduction of plant-derived antimicrobials. The objectives of this study were to investigate the influence of heat (70°C for 5 min) and subsequent cold storage (4°C up to 7 days) on the effectiveness of oregano and cinnamon essential oils and powdered olive and apple extracts against Salmonella enterica serovar Typhimurium DT104 in ground pork and to evaluate the activity of the most effective antimicrobials (cinnamon oil and olive extract) at higher concentrations in heated ground pork. The surviving Salmonella populations in two groups (heated and unheated) of antimicrobial-treated pork were compared. Higher concentrations of the most effective compounds were then tested (cinnamon oil at 0.5 to 1.0% and olive extract at 3, 4, and 5%) against Salmonella Typhimurium in heated ground pork. Samples were stored at 4°C and taken on days 0, 3, 5, and 7 for enumeration of survivors. The heating process did not affect the activity of antimicrobials. Significant 1.3- and 3-log reductions were observed with 1.0% cinnamon oil and 5% olive extract, respectively, on day 7. The minimum concentration required to achieve . 1-log reduction in Salmonella population was 0.8% cinnamon oil or 4% olive extract. The results demonstrate the effectiveness of these antimicrobials against multidrug-resistant Salmonella Typhimurium in ground pork and their stability during heating and cold storage. The most active formulations have the potential to enhance the microbial safety of ground pork.


Subject(s)
Anti-Bacterial Agents/pharmacology , Food Preservatives/pharmacology , Meat Products/microbiology , Oils, Volatile/pharmacology , Salmonella typhimurium/drug effects , Animals , Cinnamomum zeylanicum/chemistry , Colony Count, Microbial , Consumer Product Safety , Dose-Response Relationship, Drug , Food Microbiology , Food Storage/methods , Humans , Malus/chemistry , Olea/chemistry , Origanum/chemistry , Plant Oils/pharmacology , Salmonella typhimurium/growth & development , Swine , Temperature , Time Factors
19.
Meat Sci ; 94(4): 461-7, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23624435

ABSTRACT

The effects of plant compounds on Escherichia coli O157:H7 and two major heat-induced heterocyclic amines (HCAs) MeIQx and PhIP in grilled ground beef patties were determined. Ground beef with added apple and olive extracts, onion powder, and clove bud oil was inoculated with E. coli O157:H7 (107 CFU/g) and cooked to reach 45 °C at the geometric center, flipped and then cooked for another 5 min. Cooled samples were taken for microbiological and HCA analyses. Olive extract at 3% reduced E. coli O157:H7 to below detection. Reductions of up to 1 log were achieved with apple extract. Olive and apple extracts reduced MeIQx by up to 49.1 and 50.9% and PhIP by up to 50.6 and 65.2%, respectively. Onion powder reduced MeIQx and PhIP by 47 and 80.7%, respectively. Inactivation of E. coli O157:H7 and suppression of HCAs in grilled meat were achieved by optimized amounts of selected plant compounds.


Subject(s)
Amines/metabolism , Escherichia coli O157/drug effects , Food Microbiology , Hot Temperature , Magnoliopsida , Meat/analysis , Plant Preparations/pharmacology , Animals , Anti-Infective Agents/pharmacology , Cattle , Clove Oil , Cooking , Diet , Heterocyclic Compounds/metabolism , Humans , Malus , Meat/microbiology , Olea , Onions , Syzygium
20.
Food Microbiol ; 34(1): 123-9, 2013 May.
Article in English | MEDLINE | ID: mdl-23498188

ABSTRACT

The objective of this study was to evaluate the effectiveness of oregano oil on four organic leafy greens (Iceberg and Romaine lettuces and mature and baby spinaches) inoculated with Salmonella Newport as a function of treatment exposure times as well as storage temperatures. Leaf samples were washed, dip inoculated with S. Newport (6-log CFU/ml) and dried. Oregano oil was prepared at 0.1, 0.3, and 0.5% concentrations in sterile phosphate buffered saline (PBS). Inoculated leaves were immersed in the treatment solution for 1 or 2 min, and individually incubated at 4 or 8 °C. Samples were taken at day 0, 1, and 3 for enumeration of survivors. The results showed that oregano oil was effective against S. Newport at all concentrations. S. Newport showed reductions from the PBS control of 0.7-4.8 log CFU/g (Romaine lettuce), 0.8-4.8 log CFU/g (Iceberg lettuce), 0.8-4.9 log CFU/g (mature spinach), and 0.5-4.7 log CFU/g (baby spinach), respectively. The antibacterial activity also increased with exposure time. Leaf samples treated for 2 min generally showed greater reductions (by 1.4-3.2 log CFU/g), than those samples treated for 1 min; however, there was minimal difference in antimicrobial activity among samples stored under refrigeration and abuse temperatures. This study demonstrates the potential of oregano oil to inactivate S. Newport on organic leafy greens.


Subject(s)
Anti-Bacterial Agents/pharmacology , Food Preservation/methods , Food, Organic/microbiology , Lactuca/microbiology , Origanum/chemistry , Plant Oils/pharmacology , Salmonella enterica/drug effects , Spinacia oleracea/microbiology , Drug Resistance, Bacterial , Food Storage , Plant Leaves/microbiology , Salmonella enterica/growth & development , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...