Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Biomedicines ; 11(5)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37238987

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a rapidly progressive adult-onset neurodegenerative disease that is often diagnosed with a delay due to initial non-specific symptoms. Therefore, reliable and easy-to-obtain biomarkers are an absolute necessity for earlier and more accurate diagnostics. Circular RNAs (circRNAs) have already been proposed as potential biomarkers for several neurodegenerative diseases. In this study, we further investigated the usefulness of circRNAs as potential biomarkers for ALS. We first performed a microarray analysis of circRNAs on peripheral blood mononuclear cells of a subset of ALS patients and controls. Among the differently expressed circRNA by microarray analysis, we selected only the ones with a host gene that harbors the highest level of conservation and genetic constraints. This selection was based on the hypothesis that genes under selective pressure and genetic constraints could have a major role in determining a trait or disease. Then we performed a linear regression between ALS cases and controls using each circRNA as a predictor variable. With a False Discovery Rate (FDR) threshold of 0.1, only six circRNAs passed the filtering and only one of them remained statistically significant after Bonferroni correction: hsa_circ_0060762 and its host gene CSE1L. Finally, we observed a significant difference in expression levels between larger sets of patients and healthy controls for both hsa_circ_0060762 and CSE1L. CSE1L is a member of the importin ß family and mediates inhibition of TDP-43 aggregation; the central pathogenicity in ALS and hsa_circ_0060762 has binding sites for several miRNAs that have been already proposed as biomarkers for ALS. In addition, receiver operating characteristics curve analysis showed diagnostic potential for CSE1L and hsa_circ_0060762. Hsa_circ_0060762 and CSE1L thus represent novel potential peripheral blood biomarkers and therapeutic targets for ALS.

2.
Genes (Basel) ; 14(4)2023 03 27.
Article in English | MEDLINE | ID: mdl-37107562

ABSTRACT

This study investigated the association between certain genetic variations and the risk of developing proliferative vitreoretinopathy (PVR) after surgery. The study was conducted on 192 patients with primary rhegmatogenous retinal detachment (RRD) who underwent 3-port pars plana vitrectomy (PPV). The distribution of single nucleotide polymorphisms (SNPs) located in genes involved in inflammation and oxidative stress associated with PVR pathways were analyzed among patients with and without postoperative PVR grade C1 or higher. A total of 7 defined SNPs of 5 genes were selected for genotyping: rs4880 (SOD2); rs1001179 (CAT); rs1050450 (GPX1); rs1143623, rs16944, rs1071676 (IL1B); rs2910164 (MIR146A) using competitive allele-specific polymerase chain reaction. The association of SNPs with PVR risk was evaluated using logistic regression. Furthermore, the possible association of SNPs with postoperative clinical parameters was evaluated using non-parametric tests. The difference between two genotype frequencies between patients with or without PVR grade C1 or higher was found to be statistically significant: SOD2 rs4880 and IL1B rs1071676. Carriers of at least one polymorphic IL1B rs1071676 GG allele appeared to have better postoperative best-corrected visual acuity only in patients without PVR (p = 0.070). Our study suggests that certain genetic variations may play a role in the development of PVR after surgery. These findings may have important implications for identifying patients at higher risk for PVR and developing new treatments.


Subject(s)
Retinal Detachment , Vitreoretinopathy, Proliferative , Humans , Retinal Detachment/genetics , Retinal Detachment/surgery , Vitreoretinopathy, Proliferative/genetics , Vitreoretinopathy, Proliferative/surgery , Vitreoretinopathy, Proliferative/complications , Inflammation/genetics , Inflammation/complications , Genotype , Oxidative Stress/genetics
3.
Genes (Basel) ; 14(2)2023 01 27.
Article in English | MEDLINE | ID: mdl-36833252

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is described as a fatal and rapidly progressive neurodegenerative disorder caused by the degeneration of upper motor neurons in the primary motor cortex and lower motor neurons of the brainstem and spinal cord. Due to ALS's slowly progressive characteristic, which is often accompanied by other neurological comorbidities, its diagnosis remains challenging. Perturbations in vesicle-mediated transport and autophagy as well as cell-autonomous disease initiation in glutamatergic neurons have been revealed in ALS. The use of extracellular vesicles (EVs) may be key in accessing pathologically relevant tissues for ALS, as EVs can cross the blood-brain barrier and be isolated from the blood. The number and content of EVs may provide indications of the disease pathogenesis, its stage, and prognosis. In this review, we collected a recent study aiming at the identification of EVs as a biomarker of ALS with respect to the size, quantity, and content of EVs in the biological fluids of patients compared to controls.


Subject(s)
Amyotrophic Lateral Sclerosis , Extracellular Vesicles , Humans , Amyotrophic Lateral Sclerosis/pathology , Motor Neurons/pathology , Biomarkers , Extracellular Vesicles/pathology
4.
Int J Mol Sci ; 23(19)2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36232667

ABSTRACT

Neurodegenerative diseases are one of the greatest medical burdens of the modern age, being mostly incurable and with limited prognostic and diagnostic tools. Amyotrophic lateral sclerosis (ALS) is a fatal, progressive neurodegenerative disease characterized by the loss of motoneurons, with a complex etiology, combining genetic, epigenetic, and environmental causes. The neuroprotective therapeutic approaches are very limited, while the diagnostics rely on clinical examination and the exclusion of other diseases. The recent advancement in the discovery of molecular pathways and gene mutations involved in ALS has deepened the understanding of the disease pathology and opened the possibility for new treatments and diagnostic procedures. Recently, 15 risk loci with distinct genetic architectures and neuron-specific biology were identified as linked to ALS through common and rare variant association analyses. Interestingly, the quantity of related proteins to these genes has been found to change during early postnatal development in mammalian spinal cord tissue (opossum Monodelphis domestica) at the particular time when neuroregeneration stops being possible. Here, we discuss the possibility that the ALS-related genes/proteins could be connected to neuroregeneration and development. Moreover, since the regulation of gene expression in developmental checkpoints is frequently regulated by non-coding RNAs, we propose that studying the changes in the composition and quantity of non-coding RNA molecules, both in ALS patients and in the developing central nervous (CNS) system of the opossum at the time when neuroregeneration ceases, could reveal potential biomarkers useful in ALS prognosis and diagnosis.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Amyotrophic Lateral Sclerosis/diagnosis , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Animals , Biomarkers/metabolism , Humans , Mammals/genetics , Motor Neurons/metabolism , Neurodegenerative Diseases/metabolism , RNA, Untranslated/metabolism
5.
Genes (Basel) ; 13(5)2022 04 25.
Article in English | MEDLINE | ID: mdl-35627142

ABSTRACT

Inflammation and oxidative stress are recognized as important contributors to amyotrophic lateral sclerosis (ALS) disease pathogenesis. Our aim was to evaluate the impact of selected single-nucleotide polymorphisms in genes involved in inflammation and oxidative stress on ALS susceptibility and modification. One-hundred-and-eighty-five ALS patients and 324 healthy controls were genotyped for nine polymorphisms in seven antioxidant and inflammatory genes using competitive allele-specific PCR. Logistic regression; nonparametric tests and survival analysis were used in the statistical analysis. Investigated polymorphisms were not associated with ALS susceptibility. Carriers of at least one polymorphic SOD2 rs4880 T or IL1B rs1071676 C allele more often had bulbar ALS onset (p = 0.036 and p = 0.039; respectively). IL1B rs1071676 was also associated with a higher rate of disease progression (p = 0.015). After adjustment for clinical parameters; carriers of two polymorphic IL1B rs1071676 C alleles had shorter survival (HR = 5.02; 95% CI = 1.92-13.16; p = 0.001); while carriers of at least one polymorphic CAT rs1001179 T allele had longer survival (HR = 0.68; 95% CI = 0.47-0.99; p = 0.046). Our data suggest that common genetic variants in the antioxidant and inflammatory pathways may modify ALS disease. Such genetic information could support the identification of patients that may be responsive to the immune or antioxidant system-based therapies.


Subject(s)
Amyotrophic Lateral Sclerosis , Amyotrophic Lateral Sclerosis/genetics , Antioxidants , Genetic Predisposition to Disease , Humans , Inflammation/genetics , Oxidative Stress/genetics , Polymorphism, Single Nucleotide
6.
Int J Mol Sci ; 21(5)2020 Mar 03.
Article in English | MEDLINE | ID: mdl-32138249

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a complex multi-system neurodegenerative disorder with currently limited diagnostic and no therapeutic options. Despite the intense efforts no clinically applicable biomarkers for ALS are yet established. Most current research is thus focused, in particular, in identifying potential non-invasive circulating biomarkers for more rapid and accurate diagnosis and monitoring of the disease. In this review, we have focused on messenger RNA (mRNA), non-coding RNAs (lncRNAs), micro RNAs (miRNAs) and circular RNA (circRNAs) as potential biomarkers for ALS in peripheral blood serum, plasma and cells. The most promising miRNAs include miR-206, miR-133b, miR-27a, mi-338-3p, miR-183, miR-451, let-7 and miR-125b. To test clinical potential of this miRNA panel, a useful approach may be to perform such analysis on larger multi-center scale using similar experimental design. However, other types of RNAs (lncRNAs, circRNAs and mRNAs) that, together with miRNAs, represent RNA networks, have not been yet extensively studied in blood samples of patients with ALS. Additional research has to be done in order to find robust circulating biomarkers and therapeutic targets that will distinguish key RNA interactions in specific ALS-types to facilitate diagnosis, predict progression and design therapy.


Subject(s)
Amyotrophic Lateral Sclerosis/blood , Biomarkers/blood , Cell-Free Nucleic Acids/blood , Animals , Humans , MicroRNAs/blood , RNA, Messenger/blood
7.
Retina ; 40(5): 811-818, 2020 May.
Article in English | MEDLINE | ID: mdl-30807515

ABSTRACT

PURPOSE: To investigate differences in genotype distributions of single nucleotide polymorphisms within genes, encoding inflammatory mediators, among patients with rhegmatogenous retinal detachment (RRD) and patients with proliferative vitreoretinopathy (PVR). METHODS: A genetic association study was performed on 191 Slovenian patients, divided into 2 groups: 113 RRD patients with PVR and 78 RRD patients without PVR. Genotype distributions were investigated within the following 13 single nucleotide polymorphisms: rs3760396 (CCL2), rs9990554 (FGF2), rs17561 (IL1A), rs2069763 (IL2), rs1800795 (IL6), rs1800871 (IL10), rs3008 (JAK3), rs2229094 (LTA), rs1042522 (TP53), rs7656613 (PDGFRA), rs7226855 (SMAD7), rs1800471 (TGFB1), and rs1800629 (TNF). RESULTS: Differences in genotype distributions between patients with RRD with or without PVR were detected in rs1800795 (IL6) (P = 0.04), rs1800871 (in the vicinity of the IL10) (P = 0.034), and rs1800471 (TGFB1) (P = 0.032). After adjustment none of the 13 analyzed single nucleotide polymorphisms showed statistically significant associations in single nucleotide polymorphism genotype distributions between patients with RRD with and without PVR. CONCLUSION: Further research is needed, particularly expanded multicentric population-based studies, to clarify the issue of genetic contribution to PVR from different genetic, clinical, and population-based aspects.


Subject(s)
Eye Proteins/genetics , Polymorphism, Single Nucleotide , RNA/genetics , Retinal Detachment/genetics , Vitreoretinopathy, Proliferative/complications , Adolescent , Adult , Aged , Aged, 80 and over , Eye Proteins/metabolism , Female , Genetic Association Studies , Genotype , Humans , Male , Middle Aged , Retinal Detachment/etiology , Retinal Detachment/metabolism , Retrospective Studies , Vitreoretinopathy, Proliferative/genetics , Vitreoretinopathy, Proliferative/metabolism , Young Adult
9.
Mol Neurobiol ; 56(12): 8052-8062, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31175544

ABSTRACT

Circular RNAs (circRNAs) are emerging as a novel, yet powerful player in many human diseases. They are involved in several cellular processes and are becoming a noteworthy type of biomarkers. Among other functions, circRNAs can serve as RNA sponges or as scaffolds for RNA-binding proteins. Here, we investigated a microarray expression profile of circRNAs in leukocyte samples from ALS patients and age- and sex-matched healthy controls to identify differentially expressed circRNAs. We selected 10 of them for a qPCR validation of expression on a larger set of samples, identification of their associations with clinical parameters, and evaluation of their diagnostic potential. In total, expression of 7/10 circRNAs was significant in a larger cohort of ALS patients, compared with age- and sex-matched healthy controls. Three of them (hsa_circ_0023919, hsa_circ_0063411, and hsa_circ_0088036) showed the same regulation as in microarray results. These three circRNAs also had AUC > 0.95, and sensitivity and specificity for the optimal threshold point > 90%, showing their potential for using them as diagnostic biomarkers.


Subject(s)
Amyotrophic Lateral Sclerosis/blood , Amyotrophic Lateral Sclerosis/genetics , RNA, Circular/blood , RNA, Circular/genetics , Transcriptome/genetics , Adult , Aged , Aged, 80 and over , Amyotrophic Lateral Sclerosis/diagnosis , Biomarkers/blood , Female , Humans , Male , Middle Aged
10.
Histopathology ; 75(5): 683-693, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31136006

ABSTRACT

AIMS: IgA vasculitis (IgAV) is a common small-vessel systemic vasculitisthat is histologically characterised by granulocyte infiltration and IgA deposition in vessel walls. Information on microRNA (miRNA) involvement inIgAVis limited. The aim of this study was to analyse the association between histopathological changes and expression profiles of 14 miRNAs in the affected skin of 70 adult patients with IgAV. METHODS AND RESULTS: miRNA expression analysis was performed by quantitative real-time polymerase chain reaction and evaluation of histopathological changes by light and immunofluorescence microscopy on formalin-fixed paraffin-embedded skin excision samples. In IgAV-affected skin, granulocyte infiltration was significantly associated with vessel fibrinoid necrosis. Of the analysed miRNAs, four showed two-fold increased expression (let-7d, let-7f, miR-21-5p, and miR-203-3p), five showed five-fold increased expression (let-7b, miR-17-5p, miR-155-5p, miR-423-5p, and miR-451a), and threeshowed 15-fold increased expression (let-7a, miR-21-3p, miR-223-3p), as compared with controls (all P < 0.001). miR-146a-5p and miR-148b-3p showed three-fold decreased expression (P = 0.981 and P < 0.001). The expression of miR-223-3p also showed a significant positive association with granulocyte infiltration and fibrinoid necrosis. CONCLUSIONS: Altered miRNA expression, especially of miRNA-223-3p, may be associated with the skin inflammatory state in IgAV. The majority of aberrantly expressed miRNAs in IgAV-affected skin are known to influence the nuclear factor-κB signalling pathway, which is crucial for activation of key proinflammatory genes, including those encoding tumour necrosis factor-α, interleukin (IL)-6, and IL-8. Furthermore, miR-146a-5p and miR-148b-3p, which are negative regulators of inflammatory gene expression, showed decreased expression and could contribute to the exaggerated inflammation. Further investigation of miRNA expression in the affected tissues could improve our knowledge of IgAV pathogenesis, and possibly help to identify novel biomarkers in body fluids.


Subject(s)
MicroRNAs/metabolism , Skin/pathology , Vasculitis/pathology , Adult , Gene Expression Profiling , Histocytochemistry , Humans , Vasculitis/metabolism
11.
Front Genet ; 9: 551, 2018.
Article in English | MEDLINE | ID: mdl-30510563

ABSTRACT

The Slovenian territory played a crucial role in the past serving as gateway for several human migrations. Previous studies used Slovenians as a source population to interpret different demographic events happened in Europe but not much is known about the genetic background and the demographic history of this population. Here, we analyzed genome-wide data from 96 individuals to shed light on the genetic role and history of the Slovenian population. Y chromosome diversity splits into two major haplogroups R1b and R1a with the latter suggesting a genetic contribution from the steppe. Slovenian individuals are more closely related to Northern and Eastern European populations than Southern European populations even though they are geographically closer. This pattern is confirmed by an admixture and clustering analysis. We also identified a single stream of admixture events between the Slovenians with Sardinians and Russians around ∼2630 BCE (2149-3112). Using ancient samples, we found a significant admixture in Slovenians using Yamnaya and the early Neolithic Hungarians as sources, dated around ∼1762 BCE (1099-2426) suggesting a strong contribution from the steppe to the foundation of the observed modern genetic diversity. Finally, we looked for signals of selection in candidate variants and we found significant hits in HERC2 and FADS responsible for blue eye color and synthesis of long-chain unsaturated fatty acids, respectively, when Slovenians were compared to Southern Europeans. While the comparison was done with Eastern Europeans, we identified significant signals in PKD2L1 and IL6R which are genes associated with taste and coronary artery disease, respectively.

12.
J Ophthalmol ; 2018: 8761625, 2018.
Article in English | MEDLINE | ID: mdl-29862067

ABSTRACT

The present study investigated the distribution of genotypes within single nucleotide polymorphisms (SNPs) in genes, related to PVR pathogenesis across European subpopulations. Genotype distributions of 42 SNPs among 96 Slovenian healthy controls were investigated and compared to genotype frequencies in 503 European individuals (Ensembl database) and their subpopulations. Furthermore, a case-control status was simulated to evaluate effects of allele frequency changes on statistically significant results in gene-association studies investigating functional polymorphisms. In addition, 96 healthy controls were investigated within 4 SNPs: rs17561 (IL1A), rs2069763 (IL2), rs2229094 (LTA), and rs1800629 (TNF) in comparison to PVR patients. Significant differences (P < 0.05) in distribution of genotypes among 96 Slovenian participants and a European population were found in 10 SNPs: rs3024498 (IL10), rs315952 (IL1RN), rs2256965 (LST1), rs2256974 (LST1), rs909253 (LTA), rs2857602 (LTA), rs3138045 (NFKB1A), rs3138056 (NFKB1A), rs7656613 (PDGFRA), and rs1891467 (TGFB2), which additionally showed significant differences in genotype distribution among European subpopulations. This analysis also showed statistically significant differences in genotype distributions between healthy controls and PVR patients in rs17561 of the IL1A gene (OR, 3.00; 95% CI, 0.77-11.75; P = 0.036) and in rs1800629 of the TNF gene (OR, 0.48; 95% CI, 0.27-0.87; P = 0.014). Furthermore, we have shown that a small change (0.02) in minor allele frequency (MAF) significantly affects the statistical p value in case-control studies. In conclusion, the study showed differences in genotype distributions in healthy populations across different European countries. Differences in distribution of genotypes may have had influenced failed replication results in previous PVR-related SNP-association studies.

13.
Front Mol Neurosci ; 11: 106, 2018.
Article in English | MEDLINE | ID: mdl-29670510

ABSTRACT

Genetic studies have managed to explain many cases of familial amyotrophic lateral sclerosis (ALS) through mutations in several genes. However, the cause of a majority of sporadic cases remains unknown. Recently, epigenetics, especially miRNA studies, show some promising aspects. We aimed to evaluate the differential expression of 10 miRNAs, including miR-9, miR-338, miR-638, miR-663a, miR-124a, miR-143, miR-451a, miR-132, miR-206, and let-7b, for which some connection to ALS was shown previously in ALS culture cells, animal models or patients, and in three miRNA host genes, including C1orf61 (miR-9), AATK (miR-338), and DNM2 (miR-638), in leukocyte samples of 84 patients with sporadic ALS. We observed significant aberrant dysregulation across our patient cohort for miR-124a, miR-206, miR-9, let-7b, and miR-638. Since we did not use neurological controls we cannot rule out that the revealed differences in expression of investigated miRNAs are specific for ALS. Nevertheless, the group of these five miRNAs is worth of additional research in leukocytes of larger cohorts from different populations in order to verify their potential association to ALS disease. We also detected a significant up-regulation of the AAKT gene and down-regulation of the DNM2 gene, and thus, for the first time, we connected these with sporadic ALS cases. These findings open up new research toward miRNAs as diagnostic biomarkers and epigenetic processes involved in ALS. The detected significant deregulation of AAKT and DNM2 in sporadic ALS also represents an interesting finding. The DNM2 gene was previously found to be mutated in Charcot-Marie-Tooth neuropathy-type CMT2M and centronuclear myopathy (CNM). In addition, as recent studies connected AATK and frontotemporal dementia (FTD) and DNM2 and hereditary spastic paraplegia (HSP), these two genes together with our results genetically connect, at least in part, five diseases, including FTD, HSP, Charcot-Marie-Tooth (type CMT2M), CNM, and ALS, thus opening future research toward a better understanding of the cell biology involved in these partly overlapping pathologies.

14.
Mech Ageing Dev ; 174: 103-110, 2018 09.
Article in English | MEDLINE | ID: mdl-29545202

ABSTRACT

Amyotrophic lateral sclerosis is a rapidly progressing neurodegenerative disease. Decades of research show that the etiology of this disease is affected by genetic, epigenetic and environmental factors rather than limited by a patient's genotype. The interaction between these factors is complex, and research has only begun to unravel this issue. The main epigenetic mechanisms, DNA methylation, miRNA, and histone modifications, can explain a portion of the disease complexity. However, the interplay among the epigenetic mechanisms themselves and with genetic factors remains largely uncharacterized. Epigenetic changes affect numerous cell processes, from transcription and translation to protein metabolism and cell junctions. In this review, we briefly summarize the main epigenetic mechanisms and outline recent research on the role of these epigenetic mechanisms in amyotrophic lateral sclerosis.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , DNA Methylation , Epigenesis, Genetic , MicroRNAs/metabolism , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Animals , Humans , MicroRNAs/genetics
15.
Dis Markers ; 2017: 7243968, 2017.
Article in English | MEDLINE | ID: mdl-28634418

ABSTRACT

Long noncoding RNAs (lncRNAs) are a relatively well-characterized class of noncoding RNA (ncRNA) molecules, involved in the regulation of various cell processes, including transcription, intracellular trafficking, and chromosome remodeling. Their deregulation has been associated with the development and progression of various cancer types, the fact which makes them suitable as biomarkers for cancer diagnosis and prognosis. In recent years, detection of cancer-associated lncRNAs in body fluids of cancer patients has proven itself as an especially valuable method to effectively diagnose cancer. Cancer diagnosis and prognosis employing circulating lncRNAs are preferential when compared to classical biopsies of tumor tissues, especially due to their noninvasiveness, and have great potential for routine usage in clinical practice. Thus, this review focuses on summarizing the perspectives of lncRNAs as biomarkers in cancer, based on evaluating their expression profiles determined in body fluids of cancer patients.


Subject(s)
Biomarkers, Tumor/blood , Neoplasms/blood , RNA, Long Noncoding/blood , Biomarkers, Tumor/genetics , Cell-Free Nucleic Acids/blood , Cell-Free Nucleic Acids/genetics , Epigenesis, Genetic , Humans , Neoplasms/genetics , RNA, Long Noncoding/genetics
16.
Int J Genomics ; 2017: 6218353, 2017.
Article in English | MEDLINE | ID: mdl-29349062

ABSTRACT

Circular RNAs (circRNAs) are a class of noncoding RNAs (ncRNAs) that form covalently closed continuous loop structures, lacking the terminal 5' and 3' ends. CircRNAs are generated in the process of back-splicing and can originate from different genomic regions. Their unique circular structure makes circRNAs more stable than linear RNAs. In addition, they also display insensitivity to ribonuclease activity. Generally, circRNAs function as microRNA (miRNA) sponges and have a regulatory role in transcription and translation. They may be also translated in a cap-independent manner in vivo, to generate specific proteins. In the last decade, next-generation sequencing techniques, especially RNA-seq, have revealed great abundance and also dysregulation of many circRNAs in various diseases, suggesting their involvement in disease development and progression. Regarding their high stability and relatively specific differential expression patterns in tissues and extracellular environment (e.g., body fluids), they are regarded as promising novel biomarkers in cancer. Therefore, we focus this review on describing circRNA biogenesis, function, and involvement in human cancer development and address the potential of circRNAs to be effectively used as novel cancer diagnostic and prognostic biomarkers.

17.
Acta Ophthalmol ; 94(8): e786-e794, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27775230

ABSTRACT

PURPOSE: To determine the spectrum of BEST1 mutations and to study the phenotype in Slovenian families with Best vitelliform macular dystrophy (BVMD) to identify genotype-phenotype correlations. METHODS: Twenty patients from five families underwent the ophthalmological examination including electrooculogram (EOG; N = 17), fundus autofluorescence imaging (N = 16) and optical coherence tomography (N = 14). Mutational screening was performed by direct DNA sequencing of the BEST1 gene. RESULTS: Mutation c.43G>C (p.Gly15Arg) was detected in three patients from family M presenting with different clinical stages of Best disease. Mutation c.313G>C (p.Arg105Gly) was found in families K, ST, S, B and was associated with incomplete clinical penetrance and variable retinal changes, including extramacular and multifocal lesions. In three patients from family K, an atypical form of BVMD was observed; there were additional peripheral lesions outside of the vascular arcades in addition to the typical macular lesions. Multiple alterations between the vitelliruptive and pseudohypopyon stages over a period of 11 years were seen in one patient. CONCLUSION: Two previously unreported disease-associated variants in the BEST1 gene (p.Gly15Arg and p.Arg105Gly) were found in Slovenian patients with Best disease. Our data expand the mutation spectrum of the BEST1 gene and further support the broad phenotypic variability observed clinically and with optical coherence tomography (OCT) and AF imaging.


Subject(s)
Chloride Channels/genetics , Eye Proteins/genetics , Mutation, Missense , Vitelliform Macular Dystrophy/genetics , Adolescent , Adult , Bestrophins , Child , Child, Preschool , DNA Mutational Analysis , Electrooculography , Exons/genetics , Female , Genetic Association Studies , Genetic Heterogeneity , Humans , Male , Optical Imaging , Pedigree , Slovenia , Tomography, Optical Coherence , Vitelliform Macular Dystrophy/diagnostic imaging
18.
Nat Genet ; 48(9): 1043-8, 2016 09.
Article in English | MEDLINE | ID: mdl-27455348

ABSTRACT

To elucidate the genetic architecture of amyotrophic lateral sclerosis (ALS) and find associated loci, we assembled a custom imputation reference panel from whole-genome-sequenced patients with ALS and matched controls (n = 1,861). Through imputation and mixed-model association analysis in 12,577 cases and 23,475 controls, combined with 2,579 cases and 2,767 controls in an independent replication cohort, we fine-mapped a new risk locus on chromosome 21 and identified C21orf2 as a gene associated with ALS risk. In addition, we identified MOBP and SCFD1 as new associated risk loci. We established evidence of ALS being a complex genetic trait with a polygenic architecture. Furthermore, we estimated the SNP-based heritability at 8.5%, with a distinct and important role for low-frequency variants (frequency 1-10%). This study motivates the interrogation of larger samples with full genome coverage to identify rare causal variants that underpin ALS risk.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Genetic Predisposition to Disease , Munc18 Proteins/genetics , Mutation/genetics , Myelin Proteins/genetics , Proteins/genetics , Amyotrophic Lateral Sclerosis/epidemiology , Case-Control Studies , Cohort Studies , Cytoskeletal Proteins , Genome-Wide Association Study , Humans , Netherlands/epidemiology
19.
Adv Exp Med Biol ; 888: 307-30, 2015.
Article in English | MEDLINE | ID: mdl-26663190

ABSTRACT

The identification and characterization of microRNAs (miRNAs) is a rapidly growing area of research also in dermatology. Skin represents the largest organ in the human body, and its morphogenesis has been shown to require a highly coordinated and undisrupted miRNA profile. High expression of several miRNAs in the epidermis and hair follicles is necessary for normal skin development. Profiling studies have identified numerous differentially regulated miRNAs associated with either normal physiological status of the skin or some pathological processes or both. This chapter covers current knowledge of the important roles of miRNAs in the pathogenesis of some skin diseases including systemic lupus erythematosus (SLE), systemic sclerosis (SSc), dermatomyositis (DM), psoriasis (PS), and skin cancer, especially malignant melanoma (MM). In addition, the diagnostic and therapeutic relevance of miRNAs that are involved in pathological processes of the skin are elucidated providing further information for some possible clinical implications especially for their use as therapeutic targets or disease biomarkers.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation , MicroRNAs/metabolism , Skin Diseases/genetics , Skin Physiological Phenomena/genetics , Humans , Lupus Erythematosus, Systemic/genetics , Melanoma/genetics , Models, Genetic , Psoriasis/genetics , Scleroderma, Systemic/genetics , Signal Transduction/genetics
20.
Neurobiol Aging ; 36(3): 1601.e17-20, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25585530

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a complex fatal neurodegenerative disease characterized by progressive degeneration and loss of upper motor neurons in the cerebral cortex and lower motor neurons in brainstem and spinal cord. We established the frequencies of mutations in 4 major ALS-associated genes, SOD1, TARDBP, FUS, and C9ORF72 in a representative cohort of 85 Slovenian patients with sporadic form of ALS. Pathogenic massive hexanucleotide repeat expansion mutation in C9ORF72 was detected in 5.9% of patients and was the most common cause of the disease. In the remaining 3 genes, we identified 4 changes in 3 patients, p.Val14Met in SOD1, silent mutation p.Arg522Arg in FUS, and p.Gly93Cys in SOD1 together with a novel synonymous variant c.990A>G (p.Leu330Leu) in TARDBP gene, respectively. This study represents the first genetic screening of major causative genes for ALS in a cohort of sporadic ALS patients from Slovenia and is according to our knowledge the first such study in Slavic population. Overall, we genetically characterized 8.2% sporadic ALS patients.


Subject(s)
Amyotrophic Lateral Sclerosis/epidemiology , Amyotrophic Lateral Sclerosis/genetics , DNA-Binding Proteins/genetics , Genetic Association Studies , Genetic Predisposition to Disease/genetics , Mutation , Proteins/genetics , RNA-Binding Protein FUS/genetics , Superoxide Dismutase/genetics , Aged , Aged, 80 and over , C9orf72 Protein , Cohort Studies , DNA Repeat Expansion/genetics , Female , Genetic Variation , Humans , Male , Middle Aged , Slovenia/epidemiology , Superoxide Dismutase-1
SELECTION OF CITATIONS
SEARCH DETAIL
...