Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Vet J ; 308: 106229, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39187153

ABSTRACT

Coxiella burnetii infection is an emerging/re-emerging public health problem affecting several countries worldwide. In India, the disease is mainly underdiagnosed, creating hindrances in its effective control. This study investigated the occurrence of C. burnetii among apparently healthy cattle and cattle with a history of reproductive disorders by both PCR and indirect-ELISA. A total of 731 clinical samples (serum: 531, and vaginal swabs as well as blood: 100 each) from 531 cattle were screened for coxiellosis. The serum, blood, and vaginal swabs each collected from 100 cattle with a history of reproductive disorders were screened using Com1-PCR, Trans-PCR, and indirect-ELISA. Conversely, serum samples obtained from apparently healthy cattle were exclusively screened using indirect ELISA. None of the samples tested could detect C. burnetii in PCR assays, while 13.37 % of serum samples were found to be seropositive in i-ELISA. Seropositivity noted among clinically healthy and those suffering from reproductive disorders were 12.76 % and 16 %, respectively, exhibiting a non-significant difference observed between these two categories. The obtained results suggested that the occurrence of coxiellosis did not differ significantly between clinically healthy animals and those with reproductive disorders; hence, in farms affected with C. burnetii infection, screening healthy and symptomatic animals is crucial to implement appropriate preventive measures.

2.
Acta Trop ; 255: 107235, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38688445

ABSTRACT

Coxiellosis in animals is caused by the zoonotic pathogen, Coxiella burnetii. Although the disease is of public health importance it remains underdiagnosed and underreported. The cross- sectional study was aimed to estimate the occurrence of the disease in livestock of study area and also to identify the risk factors associated with the disease in animals. Blood, serum, and vaginal swabs samples were collected from 200 ruminants (cattle, sheep, and goats), across various farms in Karnataka, India. These samples were then screened using ELISA and PCR (com1 and IS1111). A questionnaire was administered to the farm owners to collect the risk factor-related information. About 5.26 % cattle, 12.3 % sheep, and 12.5 % goats were positive by ELISA. By PCR, 9.47 % cattle, 9.3 % sheep, and 10 % goats were positive. Overall, the occurrence of 14.73 %, 18.46 % and 17.5 % was estimated in cattle, sheep and goat, respectively. PCR targeting the IS1111 gene detected higher number of samples as positive as compared to the com1 gene PCR. Higher number of vaginal swab samples were detected as positive as compared to blood. History of reproductive disorders (OR: 4.30; 95 %CI:1.95- 9.46), abortion (OR: 30.94; 95 %CI:6.30- 151.84) and repeat breeding (OR:11.36; 95 %CI:4.16- 30.99) were significantly associated with coxiellosis (p < 0.005). Multivariable analysis by logistic regression model analysis suggested retained abortion, repeat breeding and rearing of animal in semi-intensive system as factors significantly associated with the infection. Cultural identification of the PCR positive samples were cultured using embryonated egg propagation and cell culture techniques and positivity was confirmed in six samples. Phylogenetic analysis of the com1 and IS1111 gene revealed clustering based on similar geographic locations. The study estimated the occurrence of the disease in the study area and identified the potential risk factors.


Subject(s)
Cattle Diseases , Coxiella burnetii , Goat Diseases , Goats , Polymerase Chain Reaction , Q Fever , Sheep Diseases , Animals , Q Fever/epidemiology , Q Fever/veterinary , Q Fever/microbiology , Risk Factors , Coxiella burnetii/genetics , Coxiella burnetii/isolation & purification , Goats/microbiology , Sheep/microbiology , Cattle , Female , India/epidemiology , Cross-Sectional Studies , Goat Diseases/microbiology , Goat Diseases/epidemiology , Sheep Diseases/epidemiology , Sheep Diseases/microbiology , Cattle Diseases/epidemiology , Cattle Diseases/microbiology , Enzyme-Linked Immunosorbent Assay , Ruminants/microbiology , Surveys and Questionnaires , Vagina/microbiology
3.
J Microbiol Methods ; 216: 106875, 2024 01.
Article in English | MEDLINE | ID: mdl-38101580

ABSTRACT

The study comparatively evaluated serological assays, namely, Weil Felix assay, and IgM ELISA with the gold-standard immunofluorescence test (IFAT) for the sensitive and specific serodiagnosis of scrub typhus infection in occupationally exposed groups of humans. A total of 78 serum samples collected from persons affected with various ailments and belonging to different risk groups were screened in the study. Out of the 78 serum samples tested, a total of 17, 26, and 47 samples turned out to be positive by IFAT, IgM ELISA, and Weil Felix test, respectively. The Weil Felix assay could not serve as an ideal test for screening scrub typhus infection owing to its poor sensitivity and specificity in comparison with IFAT. IgM-ELISA could be an initial screening test to detect scrub typhus suspected patient in limited resource settings.


Subject(s)
Orientia tsutsugamushi , Scrub Typhus , Humans , Scrub Typhus/diagnosis , Enzyme-Linked Immunosorbent Assay , Sensitivity and Specificity , Immunoglobulin M , Antibodies, Bacterial
4.
J Microbiol Methods ; 211: 106778, 2023 08.
Article in English | MEDLINE | ID: mdl-37394181

ABSTRACT

In-house developed Bacillus anthracis-specific synthetic peptide-based latex agglutination test (LAT) assay was comparatively evaluated with World Organisation for Animal Health (WOAH)-recommended polymerase chain reaction (PCR)/real-time PCR (qPCR) methods for the screening of B. anthracis spores from the soil to provide a simple, rapid, and economical immunodiagnostic test for field application.


Subject(s)
Bacillus anthracis , Bacteriological Techniques , Latex Fixation Tests , Spores, Bacterial , Latex Fixation Tests/standards , Soil Microbiology , Bacillus anthracis/isolation & purification , Bacteriological Techniques/methods , Bacteriological Techniques/standards , Real-Time Polymerase Chain Reaction/standards , Spores, Bacterial/isolation & purification , Limit of Detection
5.
J Food Sci Technol ; 60(5): 1541-1550, 2023 May.
Article in English | MEDLINE | ID: mdl-37033312

ABSTRACT

Listeria contamination in foods of animal origin is one of the most concerning food safety issues. A duplex, SYBR green-based, real-time PCR assay was developed with high-resolution melting analysis-based differentiation of the genus Listeria and Listeria monocytogenes. The primers were designed and tested against other related foodborne pathogens. The assay was optimized for standard parameters in a non-orthogonal fashion and validated following international standards. The LODabs and LOQ of the assay were calculated to be 0.78 and 1.56 ng of the target DNA. The LODrel of the assay was found to be 1% Listeria DNA in background DNA. The assay was evaluated for applicability in artificially spiked samples, providing a 120 CFU/ml detection. The assay was validated with proficiency test samples and also with samples collected for surveillance analysis. This well-established and validated assay can be utilized as a qualitative and quantitative tool for addressing the Listeria contamination in the food safety contexts. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-023-05695-2.

6.
Trop Anim Health Prod ; 55(2): 126, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36944831

ABSTRACT

Fowl typhoid (FT) is an economically significant bacterial disease of layers leading to a drastic drop in egg production. Due to increased public health concerns about antibiotics in poultry feed, a search for new safe antimicrobials for treating fowl typhoid is crucial. The antimicrobial effect of cinnamaldehyde essential oil (CnEO) against fowl typhoid in layers was investigated in this experiment. The 60-week-old BV300-layer birds (n = 100) were divided into five groups: the non-challenged control group A, only cinnamaldehyde-treated group B (CnEO @ 1:8000 dilutions through drinking water for 60 days), the challenged group C, challenged plus cinnamaldehyde therapy group D (CnEO @ 1:8000 dilutions through drinking water from 16 to 30 dpi), and challenged plus antibiotic therapy group E (chloramphenicol @ 1 gm/5lit through drinking water from 16 to 30 dpi). Hens from all challenged groups were challenged with Salmonella Gallinarum (VTCCBAA588) @ 1 × 108 CFU/ml orally. Various parameters such as clinical signs, mortality, egg production and egg weight, colony-forming unit (CFU) count of cecal content, eggshell surface, and egg yolk were evaluated all through 60 days of an experimental trial. Results indicated that, in the case of the cinnamaldehyde therapeutic group, there was a significant improvement in egg production, mild clinical signs, lower feed conversion ratio (FCR), and a significantly lower bacterial count in ceca and on the eggshell surface compared to the control challenge group. Thus, CnEO @ 1:8000 dilutions through drinking water can be a potential antimicrobial for controlling fowl typhoid.


Subject(s)
Anti-Infective Agents , Drinking Water , Oils, Volatile , Poultry Diseases , Salmonella Infections, Animal , Typhoid Fever , Animals , Female , Oils, Volatile/pharmacology , Oils, Volatile/therapeutic use , Typhoid Fever/microbiology , Typhoid Fever/veterinary , Chickens , Poultry Diseases/drug therapy , Poultry Diseases/prevention & control , Poultry Diseases/microbiology , Salmonella Infections, Animal/microbiology , Ovum
7.
Comp Immunol Microbiol Infect Dis ; 93: 101929, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36580799

ABSTRACT

A total of 38 Escherichia coli isolates were recovered from 120 samples collected from various sources of broiler chicken farms (n = 10 each) in Andhra Pradesh and Telangana states. Though the recovered E. coli isolates were found variably resistant to the tested antibiotics, all the tested isolates were susceptible to meropenem. Alarming multi-drug resistance (MDR) was observed (34/38) among the recovered isolates, wherein antibiotic-resistant genes (blaTEM, blaSHV, and tetA) were detected, except for blaCTX-M-9. The heatmap with cluster analysis exhibited that majority of the E. coli isolates recovered from different sources and regions clustered together based on their phenotypic resistance suggesting co-sharing of resistance. However, the pulsed-field gel electrophoresis (PFGE) typing revealed an extremely diverse genotypic profile. Further, a significant statistical association was not observed between hypothesized risk factors and recovered MDR- E. coli isolates from various sources, although a significant statistical association between antibiotic resistance with large flock size, poor biosecurity practices, poor workers' hygiene, and poor disinfection practices was noticed. Since the study highlighted an alarming level of drug resistance among the recovered E. coli isolates, further in-depth research in similar veins is required to ensure the prudent use of antimicrobials in the poultry sector and the implementation of an antimicrobial surveillance system.


Subject(s)
Escherichia coli Infections , Escherichia coli , Animals , Chickens , Farms , Anti-Bacterial Agents/pharmacology , Escherichia coli Infections/epidemiology , Escherichia coli Infections/veterinary , Risk Factors , Genetic Variation , beta-Lactamases/genetics
8.
Pharmaceutics ; 14(9)2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36145672

ABSTRACT

The global emergence of antimicrobial resistance (AMR) needs no emphasis. In this study, the in vitro stability, safety, and antimicrobial efficacy of nanosilver-entrapped cinnamaldehyde (AgC) against multi-drug-resistant (MDR) strains of enteroaggregative Escherichia coli (EAEC) were investigated. Further, the in vivo antibacterial efficacy of AgC against MDR-EAEC was also assessed in Galleria mellonella larval model. In brief, UV-Vis and Fourier transform infrared (FTIR) spectroscopy confirmed effective entrapment of cinnamaldehyde with nanosilver, and the loading efficiency was estimated to be 29.50 ± 0.56%. The AgC was of crystalline form as determined by the X-ray diffractogram with a mono-dispersed spherical morphology of 9.243 ± 1.83 nm in electron microscopy. AgC exhibited a minimum inhibitory concentration (MIC) of 0.008−0.016 mg/mL and a minimum bactericidal concentration (MBC) of 0.008−0.032 mg/mL against MDR- EAEC strains. Furthermore, AgC was stable (high-end temperatures, proteases, cationic salts, pH, and host sera) and tested safe for sheep erythrocytes as well as secondary cell lines (RAW 264.7 and HEp-2) with no negative effects on the commensal gut lactobacilli. in vitro, time-kill assays revealed that MBC levels of AgC could eliminate MDR-EAEC infection in 120 min. In G. mellonella larvae, AgC (MBC values) increased survival, decreased MDR-EAEC counts (p < 0.001), had an enhanced immunomodulatory effect, and was tested safe to the host. These findings infer that entrapment enhanced the efficacy of cinnamaldehyde and AgNPs, overcoming their limitations when used individually, indicating AgC as a promising alternative antimicrobial candidate. However, further investigation in appropriate animal models is required to declare its application against MDR pathogens.

9.
Probiotics Antimicrob Proteins ; 14(5): 904-914, 2022 10.
Article in English | MEDLINE | ID: mdl-35715714

ABSTRACT

The present study was envisaged to employ the green synthesis and characterization of silver nanoparticles (AgNPs) using the potential probiotic strain Lactobacillus acidophilus, to assess its antibacterial as well as antibiofilm activity against multi-drug-resistant enteroaggregative Escherichia coli (MDR-EAEC) strains and to investigate their antioxidant activity. In this study, AgNPs were successfully synthesized through an eco-friendly protocol, which was then confirmed by its X-ray diffraction (XRD) pattern. A weight loss of 15% up to 182 °C with a narrow exothermic peak between 170 °C and 205 °C was observed in thermogravimetric analysis-differential thermal analysis (TGA-DTA), while aggregated nanoclusters were observed in scanning electron microscopy (SEM). Moreover, the transmission electron microscopy (TEM) imaging of AgNPs revealed a spherical morphology and crystalline nature with an optimum size ranging from 10 to 20 nm. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of green synthesized AgNPs against the MDR-EAEC strains were found to be 7.80 mg/L and 15.60 mg/L, respectively. In vitro time-kill kinetic assay revealed a complete elimination of the MDR-EAEC strains after 180 min on co-incubation with the AgNPs. Moreover, the green synthesized AgNPs were found safe by in vitro haemolytic assay. Besides, the green synthesized AgNPs exhibited significant biofilm inhibition (P < 0.001) formed by MDR-EAEC strains. Additionally, a concentration-dependent antioxidant activity was observed in 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays. Hence, this study demonstrated potential antibacterial as well as antibiofilm activity of green synthesized AgNPs against MDR-EAEC strains with antioxidant properties and warrants further in-depth studies to explore it as an effective antimicrobial agent against MDR infections.


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Probiotics , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Biofilms , Escherichia coli , Lactobacillus acidophilus , Microbial Sensitivity Tests , Plant Extracts/chemistry , Silver/pharmacology
10.
Anim Biotechnol ; 33(7): 1449-1458, 2022 Dec.
Article in English | MEDLINE | ID: mdl-33843465

ABSTRACT

Q fever caused by Coxiella burnetii is an important zoonosis and has great public health significance. A total of 905 clinical samples from 387 cattle [serum (n = 387); vaginal swabs (n = 387); milk (n = 131)] and 59 serum samples from humans were collected from gaushala (cattle shelter) and screened for anti-C. burnetii IgG antibodies in the sera using an indirect-ELISA kit. Further, the samples were tested for C. burnetii DNA employing TaqMan real-time and conventional PCR assays targeting the com1 gene. In ELISA, 9.56% and 6.78% of animal and human sera samples were positive for anti-C. burnetii antibodies, respectively. Upon pathogen detection, 3.87% sera, 1.81% vaginal swabs, and 6.87% milk samples from cattle tested positive in TaqMan real-time PCR and 1.55% sera, 0.52% vaginal swabs, and 3.05% milk samples were found positive in conventional PCR. In humans, one serum sample was positive in both the PCR assays. The PCR positive samples (n = 12) were partially sequenced and the phylogenetic tree was constructed using com1 gene sequences (n = 42) from a different host and geographical areas. The study highlights infection of cattle and their human contacts in gaushala and identifies relationships between strains identified in the gaushala and those in other parts of the globe.


Subject(s)
Cattle Diseases , Coxiella burnetii , Q Fever , Humans , Female , Animals , Cattle , Coxiella burnetii/genetics , Phylogeny , Q Fever/epidemiology , Q Fever/veterinary , Q Fever/diagnosis , Real-Time Polymerase Chain Reaction , India , Milk
11.
Environ Microbiol ; 24(6): 2759-2780, 2022 06.
Article in English | MEDLINE | ID: mdl-34693631

ABSTRACT

Listeria monocytogenes, the causative agent of listeriosis, has been implicated in increasing foodborne outbreaks worldwide. The disease is manifested in various forms ranging from severe sepsis in immune-compromised individuals, febrile gastroenteritis, still birth, abortions and meningoencephalitis. In India, data from studies on the detection and molecular epidemiological analysis of L. monocytogenes are only recently emerging. The presence of Listeria in different ecological niches has been recorded from India, including foods, soil, vegetables, mangrove swamps, seafood, freshwater fishes, clinical cases, and also insects. The organism has also been isolated from women with spontaneous abortions, miscarriage or recurrent obstetric history, aborted foetuses, animal clinical cases and wildlife samples. A novel species of Listeria has also been characterized. Listeria monocytogenes strains isolated from clinical, environmental, and foods showed biofilm-forming abilities. Listeria monocytogenes serotype 4b isolates of ST328, a predominant and unique ST observed in India, was repeatedly isolated from different sources, times, and geographical locations. Here, we reviewed the occurrence of Listeria in different sources in India, its resistance to biocides, and provide epidemiological analysis on its genomic landscape.


Subject(s)
Disinfectants , Listeria monocytogenes , Listeria , Listeriosis , Animals , Drug Resistance, Bacterial , Female , Food Microbiology , Genomics , Humans , India/epidemiology , Listeriosis/epidemiology , Pregnancy
12.
Environ Microbiol ; 24(6): 2747-2758, 2022 06.
Article in English | MEDLINE | ID: mdl-34528343

ABSTRACT

The in vitro antibacterial efficacy of an in-house designed cell-penetrating peptide (CPP) variant of Cecropin A (1-7)-Melittin (CAMA) (CAMA-CPP) against the characterized multi-drug resistant (MDR) field strains of Salmonella Enteritidis and Salmonella Typhimurium were evaluated and compared with two identified CPPs namely, P7 and APP, keeping CAMA as control. Initially, the minimum inhibitory concentration (MIC) (µg ml-1 ) of in-house designed CAMA-CPP, APP and CAMA was determined to be 3.91, whereas that of P7 was 7.81; however, the minimum bactericidal concentration (MBC) of all the peptides were twice the MIC. CAMA-CPP and CAMA were found to be stable under different conditions (high-end temperatures, proteinase-K, cationic salts, pH and serum) when compared to the other CPPs. Moreover, CAMA-CPP exhibited negligible cytotoxicity in HEp-2 and RAW 264.7 cell lines as well as haemolysis in the sheep and human erythrocytes with no adverse effects against the commensal gut lactobacilli. In vitro time-kill assay revealed that the MBC levels of CAMA-CPP and APP could eliminate the intracellular MDR-Salmonella infections from mammalian cell lines; however, CAMA and P7 peptides were ineffective. CAMA-CPP appears to be a promising antimicrobial candidate and opens up further avenues for its in vivo clinical translation.


Subject(s)
Anti-Bacterial Agents , Cell-Penetrating Peptides , Drug Resistance, Multiple, Bacterial , Salmonella enteritidis , Salmonella typhimurium , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Cell Line , Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/pharmacology , Humans , Mice , Microbial Sensitivity Tests , RAW 264.7 Cells , Salmonella enteritidis/drug effects , Salmonella typhimurium/drug effects , Sheep
13.
J Microbiol Methods ; 190: 106318, 2021 11.
Article in English | MEDLINE | ID: mdl-34592374

ABSTRACT

Chlamydia psittaci is a zoonotic pathogen mainly transmitted by psittacine birds and poultry. The low shedding rate of the pathogen in the apparently healthy birds and human clinical cases may result in false-negative results. In the present study, a droplet digital PCR (ddPCR) assay was developed and compared with optimized quantitative PCR (qPCR) for the detection of C. psittaci from the clinical samples. The ddPCR assay was found to be comparatively more sensitive than the qPCR, wherein the limit of detection (LOD) of ddPCR was upto 2.4 copies of the DNA template, whereas, the qPCR could detect upto 38 copies of the DNA template in the reaction mixture. Overall, the developed ddPCR assay was found to be robust, specific, and could reliably quantify up to 17.8 copies of the DNA template. Finally, the applicability of the developed ddPCR assay was tested by screening the field samples (n = 124), comprising lung tissues from dead poultry and feral birds; pooled faecal samples from the free-living birds, commercial and backyard poultry farms; pharyngeal and cloacal swabs collected from the duck farms. Of these, a total of seven samples were found to be positive by the ddPCR, whereas, three samples could be detected as positive using the qPCR. The developed ddPCR could serve as a reliable screening tool, particularly in those clinical samples wherein the shedding of C. psittaci is substantially very low.


Subject(s)
Chlamydophila psittaci/genetics , Chlamydophila psittaci/isolation & purification , High-Throughput Screening Assays/methods , Polymerase Chain Reaction/methods , Animals , Birds/microbiology , Chlamydophila psittaci/classification , DNA, Bacterial , Face/microbiology , Humans , Psittacosis/diagnosis , Psittacosis/microbiology , Sensitivity and Specificity
14.
Gut Pathog ; 13(1): 46, 2021 Jul 17.
Article in English | MEDLINE | ID: mdl-34273998

ABSTRACT

BACKGROUND: In the wake of emergence of antimicrobial resistance, bioactive phytochemical compounds are proving to be important therapeutic agents. The present study envisaged in silico molecular docking as well as in vitro antimicrobial efficacy screening of identified phytochemical ligands to the dispersin (aap) and outer membrane osmoporin (OmpC) domains of enteroaggregative Escherichia coli (EAEC) and non-typhoidal Salmonella spp. (NTS), respectively. MATERIALS AND METHODS: The evaluation of drug-likeness, molecular properties, and bioactivity of the identified phytocompounds (thymol, carvacrol, and cinnamaldehyde) was carried out using Swiss ADME, while Protox-II and StopTox servers were used to identify its toxicity. The in silico molecular docking of the phytochemical ligands with the protein motifs of dispersin (PDB ID: 2jvu) and outer membrane osmoporin (PDB ID: 3uu2) were carried out using AutoDock v.4.20. Further, the antimicrobial efficacy of these compounds against multi-drug resistant EAEC and NTS strains was determined by estimating the minimum inhibitory concentrations and minimum bactericidal concentrations. Subsequently, these phytochemicals were subjected to their safety (sheep and human erythrocytic haemolysis) as well as stability (cationic salts, and pH) assays. RESULTS: All the three identified phytochemicals ligands were found to be zero violators of Lipinski's rule of five and exhibited drug-likeness. The compounds tested were categorized as toxicity class-4 by Protox-II and were found to be non- cardiotoxic by StopTox. The docking studies employing 3D model of dispersin and ompC motifs with the identified phytochemical ligands exhibited good binding affinity. The identified phytochemical compounds were observed to be comparatively stable at different conditions (cationic salts, and pH); however, a concentration-dependent increase in the haemolytic assay was observed against sheep as well as human erythrocytes. CONCLUSIONS: In silico molecular docking studies provided useful insights to understand the interaction of phytochemical ligands with protein motifs of pathogen and should be used routinely before the wet screening of any phytochemicals for their antibacterial, stability, and safety aspects.

15.
J Microbiol Methods ; 188: 106278, 2021 09.
Article in English | MEDLINE | ID: mdl-34246691

ABSTRACT

The present study evaluated the comparative serodiagnostic efficacy of recombinant listeriolysin-O (rLLO) and synthetic LLO- 2 peptide-based indirect ELISA vis-à-vis cultural isolation using samples (n = 1326; blood, sera, vaginal swabs, and rectal swabs) collected from caprines (n = 350) and ovines (n = 50) having reproductive and/or nervous system disorders and/or healthy animals. On screening the test sera by rLLO- based ELISA, the antibodies against LLO (ALLO) were observed in 17.71% of the caprines and 2% of the ovines, respectively, while synthetic LLO-2- based ELISA revealed ALLO in 6.86% of caprines and not in ovines. Moreover, the adsorption of positive test sera with streptolysin-O (SLO) resulted in a significant reduction (7.43%; p < 0.05) in the seropositivity with rLLO- based ELISA, whereas LLO-2- based ELISA revealed marginal reduction (4.29%; p > 0.05) in the seropositivity. Overall, the seropositivity with LLO-2 synthetic peptide revealed comparatively less cross-reactivity in comparison to rLLO. The cultural isolation yielded five pathogenic L. monocytogenes isolates and three non-pathogenic Listeria spp. from caprine samples; however, Listeria spp. could not be recovered from any of the ovine samples. Further, on comparing seropositivity with the isolation study results, it was found that two out of the five animals from which pathogenic L. monocytogenes isolated were also found seropositive in both the ELISAs even after adsorption with SLO. Interestingly, rLLO- based ELISA detected antibodies against unadsorbed caprine sera even in those samples from which non-pathogenic Listeria spp. were isolated, whereas antibodies were not detected in LLO-2 peptide-based ELISA. In conclusion, it could be inferred that the synthetic LLO-2 peptide serves as a non- cross-reactive, ideal diagnostic antigen in serodiagnosis of capro-ovine listeriosis.


Subject(s)
Bacterial Toxins/genetics , Enzyme-Linked Immunosorbent Assay/methods , Heat-Shock Proteins/genetics , Hemolysin Proteins/genetics , Listeriosis/diagnosis , Peptides/chemical synthesis , Peptides/genetics , Animals , Antibodies, Bacterial/blood , Antigens, Bacterial , Bacterial Proteins , Cross Reactions , Female , Goat Diseases/diagnosis , Goats , Listeria/genetics , Listeria/isolation & purification , Listeriosis/blood , Listeriosis/microbiology , Recombinant Proteins , Serologic Tests/methods , Sheep , Sheep Diseases/diagnosis , Streptolysins
16.
Indian J Med Res ; 153(3): 348-357, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33906998

ABSTRACT

Fisheries comprise the fastest growing sector meeting the global protein requirements. Being an affordable enterprise, it is considered a safe source of food and the muscles of healthy fishes are almost sterile. However, a multitude of hazards (biological, chemical, and environmental) can be introduced into aquaculture throughout the production and supply chain. Also, it can originate from unsuitable farming practices, environmental pollution, and socio-cultural habits prevailing in various regions. Hence, with an increasing global population and demands for aquacultural products, assessment and regulation of food safety concerns are becoming significantly evident. Ensuring safe, secure, affordable, and quality food for all in a global context is pragmatically difficult. In this context, it is quite imperative to understand the ecology and dynamics of these hazards throughout the entire production chain in a One Health approach. Here, we discuss the issues and challenges faced in the fisheries sector as a whole and the need for a One Health approach to overcome such hurdles.


Subject(s)
Fisheries , One Health , Animals , Aquaculture , Food Safety , Food Supply , Humans
17.
Pathog Dis ; 79(3)2021 03 20.
Article in English | MEDLINE | ID: mdl-33512501

ABSTRACT

High throughput in vivo laboratory models is need for screening and identification of effective therapeutic agents to overcome microbial drug-resistance. This study was undertaken to evaluate in vivo antimicrobial efficacy of short-chain antimicrobial peptide- Cecropin A (1-7)-Melittin (CAMA) against three multi-drug resistant enteroaggregative Escherichia coli (MDR-EAEC) field isolates in a Galleria mellonella larval model. The minimum inhibitory concentration (MIC; 2.0 mg/L) and minimum bactericidal concentration (MBC; 4.0 mg/L) of CAMA were determined by microdilution assay. CAMA was found to be stable at high temperatures, physiological concentration of cationic salts and proteases; safe with sheep erythrocytes, secondary cell lines and commensal lactobacilli at lower MICs; and exhibited membrane permeabilization. In vitro time-kill assay revealed concentration- and time-dependent clearance of MDR-EAEC in CAMA-treated groups at 30 min. CAMA- treated G. mellonella larvae exhibited an increased survival rate, reduced MDR-EAEC counts, immunomodulatory effect and proved non-toxic which concurred with histopathological findings. CAMA exhibited either an equal or better efficacy than the tested antibiotic control, meropenem. This study highlights the possibility of G. mellonella larvae as an excellent in vivo model for investigating the host-pathogen interaction, including the efficacy of antimicrobials against MDR-EAEC strains.


Subject(s)
Antimicrobial Cationic Peptides/pharmacology , Escherichia coli Infections/drug therapy , Escherichia coli Infections/microbiology , Escherichia coli Infections/pathology , Escherichia coli/drug effects , Melitten/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Antimicrobial Peptides/pharmacology , Disease Models, Animal , Drug Resistance, Multiple, Bacterial , Larva/microbiology , Microbial Sensitivity Tests , Moths/microbiology , Survival Rate
18.
Environ Microbiol Rep ; 13(2): 138-158, 2021 04.
Article in English | MEDLINE | ID: mdl-33314653

ABSTRACT

Coxiellosis or Q fever is an important global occupational zoonotic disease caused by one of the most contagious bacterial pathogens - Coxiella burnetii, which ranks one among the 13 global priority zoonoses. The detection of C. burnetii infection is exhibiting an increasing trend in high-risk personnel around the globe. It has increasingly been detected from foods of animal origin (including bulk milk, eggs, and meat) as well as tick vectors in many parts of the world. Coxiellosis is reported to be an important public health threat causing spontaneous abortions in humans and potential reproductive failure, which would result in production losses among livestock. Further, comprehensive coverage of the reports and trends of Q fever in developing countries, where this infection is supposed to be widely prevalent appears scarce. Also, the pathogen remains grossly neglected and underreported. Moreover, policymakers and funding agencies do not view it as a priority problem, especially in the Indian subcontinent, including Sri Lanka, Bhutan, Pakistan, Nepal, Bangladesh and Maldives. Here, we review the occurrence and epidemiology of the disease in a global context with special emphasis on its status in the Indian subcontinent.


Subject(s)
Coxiella burnetii , Q Fever , Animals , Q Fever/epidemiology , Zoonoses/epidemiology
19.
Front Microbiol ; 11: 575917, 2020.
Article in English | MEDLINE | ID: mdl-33072040

ABSTRACT

The study evaluated the in vitro antimicrobial and antibiofilm efficacy of an antimicrobial peptide (AMP), lactoferricin (17-30) [Lfcin (17-30)], against biofilm-forming multi-drug-resistant (MDR) strains of enteroaggregative Escherichia coli (EAEC), and subsequently, the in vivo antimicrobial efficacy was assessed in a Galleria mellonella larval model. Initially, minimum inhibitory concentration (MIC; 32 µM), minimum bactericidal concentration (MBC; 32 µM), and minimum biofilm eradication concentration (MBEC; 32 µM) of Lfcin (17-30) were determined against MDR-EAEC field isolates (n = 3). Lfcin (17-30) was tested stable against high-end temperatures (70 and 90°C), physiological concentration of cationic salts (150 mM NaCl and 2 mM MgCl2), and proteases (proteinase-K and lysozyme). Further, at lower MIC, Lfcin (17-30) proved to be safe for sheep RBCs, secondary cell lines (HEp-2 and RAW 264.7), and beneficial gut lactobacilli. In the in vitro time-kill assay, Lfcin (17-30) inhibited the MDR-EAEC strains 3 h post-incubation, and the antibacterial effect was due to membrane permeation of Lfcin (17-30) in the inner and outer membranes of MDR-EAEC. Furthermore, in the in vivo experiments, G. mellonella larvae treated with Lfcin (17-30) exhibited an increased survival rate, lower MDR-EAEC counts (P < 0.001), mild to moderate histopathological changes, and enhanced immunomodulatory effect and were safe to larval cells when compared with infection control. Besides, Lfcin (17-30) proved to be an effective antibiofilm agent, as it inhibited and eradicated the preformed biofilm formed by MDR-EAEC strains in a significant (P < 0.05) manner both by microtiter plate assay and live/dead bacterial quantification-based confocal microscopy. We recommend further investigation of Lfcin (17-30) in an appropriate animal model before its application in target host against MDR-EAEC strains.

20.
Hum Vaccin Immunother ; 16(12): 3023-3033, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33121328

ABSTRACT

Severe acute respiratory syndrome Coronavirus- 2 (SARS-CoV-2), the etiological agent of the novel coronavirus disease (COVID-19), has posed a great public health threat to the global community as a pandemic. The origin of the virus has been linked to animals, through a yet-to-be-identified intermediate host. The disease is transmitted to humans mainly through inhalation or contact with infected droplets. The variable clinical presentation of COVID-19 includes fever, cough, sore throat, breathlessness, fatigue and malaise; however, cutaneous, ocular, neurological, and gastrointestinal manifestations have also been reported. There is an urgent need to strengthen One Health surveillance, intervention, and management strategies to understand the ecology of coronaviruses and to prevent epidemics in the future. Global attention toward the development of treatments, immunotherapies, vaccines, and control options to combat the COVID-19 pandemic has been on an increasing trend. Here, we review the current epidemiological status, public health concerns, and mitigation strategies for COVID-19.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/epidemiology , COVID-19/prevention & control , Global Health/trends , Public Health/trends , SARS-CoV-2 , Animals , Cough/epidemiology , Cough/therapy , Disease Outbreaks/prevention & control , Fever/epidemiology , Fever/therapy , Humans , Pandemics/prevention & control , Public Health/methods , SARS-CoV-2/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL