Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Biol (Weinh) ; 8(1): e2300148, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37518850

ABSTRACT

Aging results in the progressive decline of muscle strength. Interventions to maintain muscle strength may mitigate the age-related loss of physical function, thus maximizing health span. The work on environmental enrichment (EE), an experimental paradigm recapitulating aspects of an active lifestyle, has revealed EE-induced metabolic benefits mediated by a brain-fat axis across the lifespan of mice. EE initiated at 18-month of age shows a trend toward an increased mean lifespan. While previous work described EE's influences on the aging dynamics of several central-peripheral processes, its influence on muscle remained understudied. Here, the impact of EE is investigated on motor function, neuromuscular physiology, and the skeletal muscle transcriptome. EE is initiated in 20-month-old mice for a five-month period. EE mice exhibit greater relative lean mass that is associated with improved mobility and hindlimb grip strength. Transcriptomic profiling of muscle tissue reveals an EE-associated enrichment of gene expression within several metabolic pathways related to oxidative phosphorylation and the TCA cycle. Many mitochondrial-related genes-several of which participate in the electron transport chain-are upregulated. Stress-responsive signaling pathways are downregulated because of EE. The results suggest that EE improves motor function-possibly through preservation of mitochondrial function-even late in life.


Subject(s)
Environment , Transcriptome , Mice , Animals , Brain , Gene Expression Profiling , Muscle, Skeletal
2.
Gene Ther ; 31(3-4): 95-104, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37699965

ABSTRACT

Fibroblast growth factor 21 (FGF21) has been developed as a potential therapeutic agent for metabolic syndromes. Moreover, FGF21 is considered a pro-longevity hormone because transgenic mice overexpressing FGF21 display extended lifespan, raising the possibility of using FGF21 to promote healthy aging. We recently showed that visceral fat directed FGF21 gene therapy improves metabolic and immune health in insulin resistant BTBR mice. Here, we used a fat directed rAAV-FGF21 vector in 17-month-old female mice to investigate whether long-term FGF21 gene transfer could mitigate aging-related functional decline. Animals with FGF21 treatment displayed a steady, significant lower body weight over 7-month of the study compared to age-matched control mice. FGF21 treatment reduced adiposity and increased relative lean mass and energy expenditure associated with almost 100 folds higher serum level of FGF21. However, those changes were not translated into benefits on muscle function and did not affect metabolic function of liver. Overall, we have demonstrated that a single dose of fat-directed AAV-FGF21 treatment can provide a sustainable, high serum level of FGF21 over long period of time, and mostly influences adipose tissue homeostasis and energy expenditure. High levels of FGF21 alone in aged mice is not sufficient to improve liver or muscle functions.


Subject(s)
Adipose Tissue , Liver , Mice , Female , Animals , Adipose Tissue/metabolism , Liver/metabolism , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/pharmacology , Mice, Transgenic , Genetic Therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...