Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(20): 13817-13835, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38716885

ABSTRACT

The reaction of Li[(TAML)CoIII]·3H2O (TAML = tetraamido macrocyclic tetraanionic ligand) with iodosylbenzene at 253 K in acetone in the presence of redox-innocent metal ions (Sc(OTf)3 and Y(OTf)3) or triflic acid affords a blue species 1, which is converted reversibly to a green species 2 upon cooling to 193 K. The electronic structures of 1 and 2 have been determined by combining advanced spectroscopic techniques (X-band electron paramagnetic resonance (EPR), electron nuclear double resonance (ENDOR), X-ray absorption spectroscopy/extended X-ray absorption fine structure (XAS/EXAFS), and magnetic circular dichroism (MCD)) with ab initio theoretical studies. Complex 1 is best represented as an S = 1/2 [(Sol)(TAML•+)CoIII---OH(LA)]- species (LA = Lewis/Brønsted acid and Sol = solvent), where an S = 1 Co(III) center is antiferromagnetically coupled to S = 1/2 TAML•+, which represents a one-electron oxidized TAML ligand. In contrast, complex 2, also with an S = 1/2 ground state, is found to be multiconfigurational with contributions of both the resonance forms [(H-TAML)CoIV═O(LA)]- and [(H-TAML•+)CoIII═O(LA)]-; H-TAML and H-TAML•+ represent the protonated forms of TAML and TAML•+ ligands, respectively. Thus, the interconversion of 1 and 2 is associated with a LA-associated tautomerization event, whereby H+ shifts from the terminal -OH group to TAML•+ with the concomitant formation of a terminal cobalt-oxo species possessing both singlet (SCo = 0) Co(III) and doublet (SCo = 1/2) Co(IV) characters. The reactivities of 1 and 2 at different temperatures have been investigated in oxygen atom transfer (OAT) and hydrogen atom transfer (HAT) reactions to compare the activation enthalpies and entropies of 1 and 2.

2.
Inorg Chem ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38739843

ABSTRACT

Emulating the capabilities of the soluble methane monooxygenase (sMMO) enzymes, which effortlessly activate oxygen at diiron(II) centers to form a reactive diiron(IV) intermediate Q, which then performs the challenging oxidation of methane to methanol, poses a significant challenge. Very recently, one of us reported the mononuclear complex [(cyclam)FeII(CH3CN)2]2+ (1), which performed a rare bimolecular activation of the molecule of O2 to generate two molecules of FeIV═O without the requirement of external proton or electron sources, similar to sMMO. In the present study, we employed the density functional theory (DFT) calculations to investigate this unique mechanism of O2 activation. We show that secondary hydrogen-bonding interactions between ligand N-H groups and O2 play a vital role in reducing the energy barrier associated with the initial O2 binding at 1 and O-O bond cleavage to form the FeIV═O complex. Further, the unique reactivity of FeIV═O species toward simultaneous C-H and O-H bond activation process has been demonstrated. Our study unveils that the nature of the magnetic coupling between the diiron centers is also crucial. Given that the influence of magnetic coupling and noncovalent interactions in catalysis remains largely unexplored, this unexplored realm presents numerous avenues for experimental chemists to develop novel structural and functional analogues of sMMO.

3.
ChemSusChem ; 17(5): e202301614, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38297965

ABSTRACT

This study shows that the simple approach of keeping anodic TiO2 nanotubes at 70 °C in ethanol for 1 h results in improved photoelectrochemical water splitting activity due to initiation of crystallization in the material amplified by the light-induced formation of a Ti3+ -Vo states under UV 365 nm illumination. For the first time, the light-induced Ti3+ -Vo states are generated when oxygen is present in the reaction solution and are stable when in contact with air (oxygen) for a long time (two months). We confirmed here that the amorphous or nearly amorphous structure of titania supports the survival of Ti3+ species in contact with oxygen. It is also shown that the ethanol treatment substantially improves the morphology of the titania nanotube arrays, specifically, less surface cracking and surface purification from C- and F-based contamination from the electrolyte used for anodizing.

4.
Nat Chem ; 16(4): 658-665, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38216752

ABSTRACT

The activation of dioxygen at haem and non-haem metal centres, and subsequent functionalization of unactivated C‒H bonds, has been a focal point of much research. In iron-mediated oxidation reactions, O2 binding at an iron(II) centre is often accompanied by an oxidation of the iron centre. Here we demonstrate dioxygen activation by sodium tetraphenylborate and protons in the presence of an iron(II) complex to form a reactive radical species, whereby the iron oxidation state remains unaltered in the presence of a highly oxidizing phenoxyl radical and O2. This complex, containing an unusual iron(II)-phenoxyl radical motif, represents an elusive example of a spectroscopically characterized oxygen-derived iron(II)-reactive intermediate during chemical and biological dioxygen activation at haem and non-haem iron active centres. The present report opens up strategies for the stabilization of a phenoxyl radical cofactor, with its full oxidizing capabilities, to act as an independent redox centre next to an iron(II) site during substrate oxidation reactions.

5.
Chem Sci ; 15(2): 528-533, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38179538

ABSTRACT

The N3O macrocycle of the 12-TMCO ligand stabilizes a high spin (S = 5/2) [FeIII(12-TMCO)(OOtBu)Cl]+ (3-Cl) species in the reaction of [FeII(12-TMCO)(OTf)2] (1-(OTf)2) with tert-butylhydroperoxide (tBuOOH) in the presence of tetraethylammonium chloride (NEt4Cl) in acetonitrile at -20 °C. In the absence of NEt4Cl the oxo-iron(iv) complex 2 [FeIV(12-TMCO)(O)(CH3CN)]2+ is formed, which can be further converted to 3-Cl by adding NEt4Cl and tBuOOH. The role of the cis-chloride ligand in the stabilization of the FeIII-OOtBu moiety can be extended to other anions including the thiolate ligand relevant to the enzyme superoxide reductase (SOR). The present study underlines the importance of subtle electronic changes and secondary interactions in the stability of the biologically relevant metal-dioxygen intermediates. It also provides some rationale for the dramatically different outcomes of the chemistry of iron(iii)peroxy intermediates formed in the catalytic cycles of SOR (Fe-O cleavage) and cytochrome P450 (O-O bond lysis) in similar N4S coordination environments.

6.
J Inorg Biochem ; 241: 112123, 2023 04.
Article in English | MEDLINE | ID: mdl-36701984

ABSTRACT

The FeIVO complexes of bispidines (3,7-diazabicyclo[3.3.1]nonane derivatives) are known to be highly reactive oxidants - with the tetradentate bispidine, the so far most reactive ferryl complex has been reported and two isomeric pentadentate ligands also lead to very reactive high-valent oxidants. With a series of 4 new bispidine derivatives we now try to address the question why the bispidine scaffold in general leads to very reactive oxidants and how this can be tuned by ligand modifications. The study is based on a full structural, spectroscopic and electrochemical analysis of the iron(II) precursors, spectroscopic data of the iron(IV)-oxido complexes, a kinetic analysis of the stoichiometric oxidation of thioanisole by five different bispidine­iron(IV)-oxido complexes and on product analyses of reactions by the five ferryl oxidants with thioanisole, ß-methylstyrene and cis-stilbene as substrates.


Subject(s)
Oxidants , Ligands , Models, Molecular , Kinetics , Oxidants/chemistry , Oxidation-Reduction
7.
Angew Chem Int Ed Engl ; 62(6): e202214074, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36378951

ABSTRACT

In many metalloenzymes, sulfur-containing ligands participate in catalytic processes, mainly via the involvement in electron transfer reactions. In a biomimetic approach, we now demonstrate the implication of S-ligation in cobalt mediated oxygen reduction reactions (ORR). A comparative study between the catalytic ORR capabilities of the four-nitrogen bound [Co(cyclam)]2+ (1; cyclam=1,5,8,11-tetraaza-cyclotetradecane) and the S-containing analog [Co(S2 N2 -cyclam)]2+ (2; S2 N2 -cyclam=1,8-dithia-5,11-diaza-cyclotetradecane) reveals improved catalytic performance once the chalcogen is introduced in the Co coordination sphere. Trapping and characterization of the intermediates formed upon dioxygen activation at the CoII centers in 1 and 2 point to the involvement of sulfur in the O2 reduction process as the key for the improved catalytic ORR capabilities of 2.

8.
Angew Chem Int Ed Engl ; 62(10): e202209437, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36541062

ABSTRACT

Diiron cofactors in enzymes perform diverse challenging transformations. The structures of high valent intermediates (Q in methane monooxygenase and X in ribonucleotide reductase) are debated since Fe-Fe distances of 2.5-3.4 Šwere attributed to "open" or "closed" cores with bridging or terminal oxido groups. We report the crystallographic and spectroscopic characterization of a FeIII 2 (µ-O)2 complex (2) with tetrahedral (4C) centres and short Fe-Fe distance (2.52 Å), persisting in organic solutions. 2 shows a large Fe K-pre-edge intensity, which is caused by the pronounced asymmetry at the TD FeIII centres due to the short Fe-µ-O bonds. A ≈2.5 ŠFe-Fe distance is unlikely for six-coordinate sites in Q or X, but for a Fe2 (µ-O)2 core containing four-coordinate (or by possible extension five-coordinate) iron centres there may be enough flexibility to accommodate a particularly short Fe-Fe separation with intense pre-edge transition. This finding may broaden the scope of models considered for the structure of high-valent diiron intermediates formed upon O2 activation in biology.


Subject(s)
Iron , Oxygen , Iron/chemistry , Spectrum Analysis , Crystallography, X-Ray , Oxygen/chemistry , Oxidation-Reduction
9.
Angew Chem Int Ed Engl ; 62(12): e202217076, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36583430

ABSTRACT

In class Ib ribonucleotide reductases (RNRs) a dimanganese(II) cluster activates superoxide (O2 ⋅- ) rather than dioxygen (O2 ), to access a high valent MnIII -O2 -MnIV species, responsible for the oxidation of tyrosine to tyrosyl radical. In a biomimetic approach, we report the synthesis of a thiolate-bound dimanganese complex [MnII 2 (BPMT)(OAc)2 ](ClO)4 (BPMT=(2,6-bis{[bis(2-pyridylmethyl)amino]methyl}-4-methylthiophenolate) (1) and its reaction with O2 ⋅- to form a [(BPMT)MnO2 Mn]2+ complex 2. Resonance Raman investigation revealed the presence of an O-O bond in 2, while EPR analysis displayed a 16-line St =1/2 signal at g=2 typically associated with a MnIII MnIV core, as detected in class Ib RNRs. Unlike all other previously reported Mn-O2 -Mn complexes, generated by O2 ⋅- activation at Mn2 centers, 2 proved to be a capable electrophilic oxidant in aldehyde deformylation and phenol oxidation reactions, rendering it one of the best structural and functional models for class Ib RNRs.

10.
J Inorg Biochem ; 227: 111668, 2022 02.
Article in English | MEDLINE | ID: mdl-34923388

ABSTRACT

A rate enhancement of one to two orders of magnitude can be obtained in the aldehyde deformylation reactions by replacing the -N(CH3) groups of [NiIII(O2)(Me4[12]aneN4)]+ (Me4[12]aneN4 = 1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecane) and [NiIII(O2)(Me4[13]aneN4)]+ (Me4[13]aneN4 = 1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclotridecane) complexes by -NH in [NiIII(O2)([12]aneN4)]+ (2; [12]aneN4 = 1,4,7,10-tetraazacyclododecane) and [NiIII(O2)([13]aneN4)]+ (4; [13]aneN4 = 1,4,7,10-tetraazacyclotridecane). Based on detailed spectroscopic, reaction-kinetics and theoretical investigations, the higher reactivities of 2 and 4 are attributed to the changes in the secondary-sphere interactions between the [NiIII(O2)]+ and [12]aneN4 or [13]aneN4 moieties, which open up an alternative electrophilic pathway for the aldehyde oxidation reaction. Identification of primary kinetic isotope effects on the reactivity and stability of 2 when the -NH groups of the [12]aneN4 ligand are deuterated may also suggest the presence of secondary interaction between the -NH groups of [12]aneN4 and [NiIII(O2)]+ moieties, although, such interactions are not obvious in the DFT calculated optimized structure at the employed level of theory.


Subject(s)
Aldehydes/chemistry , Coordination Complexes/chemistry , Nickel/chemistry , Oxidation-Reduction
11.
Dalton Trans ; 50(34): 11889-11898, 2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34373886

ABSTRACT

A mononuclear nonheme cobalt(ii) complex, [(TMG3tren)CoII(OTf)](OTf) (1), activates dioxygen in the presence of hydrogen atom donor substrates, such as tetrahydrofuran and cyclohexene, resulting in the generation of a cobalt(ii)-alkylperoxide intermediate (2), which then converts to the previously reported cobalt(iv)-oxo complex, [(TMG3tren)CoIV(O)]2+-(Sc(OTf)3)n (3), in >90% yield upon addition of a redox-inactive metal ion, Sc(OTf)3. Intermediates 2 and 3 represent the cobalt analogues of the proposed iron(ii)-alkylperoxide precursor that converts to an iron(iv)-oxo intermediate via O-O bond heterolysis in pterin-dependent nonheme iron oxygenases. In reactivity studies, 2 shows an amphoteric reactivity in electrophilic and nucleophilic reactions, whereas 3 is an electrophilic oxidant. To the best of our knowledge, the present study reports the first example showing the generation of cobalt-oxygen intermediates by activating dioxygen at a cobalt(ii) center and the reactivities of the cobalt-oxygen intermediates in oxidation reaction.

12.
Angew Chem Int Ed Engl ; 60(42): 23018-23024, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34309168

ABSTRACT

CuI /TEMPO (TEMPO=2,2,6,6-tetramethylpiperidinyloxyl) catalyst systems are versatile catalysts for aerobic alcohol oxidation reactions to selectively yield aldehydes. However, several aspects of the mechanism are yet unresolved, mainly because of the lack of identification of any reactive intermediates. Herein, we report the synthesis and characterization of a dinuclear [L12 Cu2 ]2+ complex 1, which in presence of TEMPO can couple the catalytic 4 H+ /4 e- reduction of O2 to water to the oxidation of benzylic and aliphatic alcohols. The mechanisms of the O2 -reduction and alcohol oxidation reactions have been clarified by the spectroscopic detection of the reactive intermediates in the gas and condensed phases, as well as by kinetic studies on each step in the catalytic cycles. Bis(µ-oxo)dicopper(III) (2) and bis(µ-hydroxo)dicopper(II) species 3 are shown as viable reactants in oxidation catalysis. The present study provides deep mechanistic insight into the aerobic oxidation of alcohols that should serve as a valuable foundation for ongoing efforts dedicated towards the understanding of transition-metal catalysts involving redox-active organic cocatalysts.

13.
Angew Chem Int Ed Engl ; 60(27): 14954-14959, 2021 06 25.
Article in English | MEDLINE | ID: mdl-33843113

ABSTRACT

µ-1,2-peroxo-bridged diiron(III) intermediates P are proposed as reactive intermediates in various biological oxidation reactions. In sMMO, P acts as an electrophile, and performs hydrogen atom and oxygen atom transfers to electron-rich substrates. In cyanobacterial ADO, however, P is postulated to react by nucleophilic attack on electrophilic carbon atoms. In biomimetic studies, the ability of µ-1,2-peroxo-bridged dimetal complexes of Fe, Co, Ni and Cu to act as nucleophiles that effect deformylation of aldehydes is documented. By performing reactivity and theoretical studies on an end-on µ-1,2-peroxodicobalt(III) complex 1 involving a non-heme ligand system, L1, supported on a Sn6 O6 stannoxane core, we now show that a peroxo-bridged dimetal complex can also be a reactive electrophile. The observed electrophilic chemistry, which is induced by the constraints provided by the Sn6 O6 core, represents a new domain for metal-peroxide reactivity.

14.
Chem Soc Rev ; 50(8): 4804-4811, 2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33657202

ABSTRACT

Oxygen evolution and reduction reactions are fundamental processes in biological energy conversion schemes, which represent an attractive method for artificial energy conversion for a world still largely depending on fossil fuels. A range of metalloenzymes achieve these challenging tasks in biology by activating water and dioxygen using cheap and abundant transition metals, such as iron, copper, and manganese. High-valent metal-oxo/oxyl, metal-superoxo, and/or metal-(hydro)peroxo species are common reactive intermediates that are found in the O-O bond formation and activation reactions. The transient nature of the metal-oxygen intermediates has, however, prevented their isolation and characterization in most cases. As a consequence, unambiguous mechanistic assignments in the O-O bond formation and cleavage processes in biological and chemical entries remain elusive, especially for the intermediates and mechanisms involved in the O-O bond formation reactions. This viewpoint article aims at summarizing the information obtained to date in enzymatic and biomimetic systems that fuels the debate regarding the nature of the active oxidants and the mechanistic uncertainties associated with the transition metal-mediated O-O bond formation and cleavage reactions.


Subject(s)
Oxygen/metabolism , Transition Elements/metabolism , Oxygen/chemistry , Transition Elements/chemistry
15.
Chem Commun (Camb) ; 57(23): 2947-2950, 2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33621306

ABSTRACT

A mononuclear oxoiron(iv) complex 1-trans bearing two equatorial sulfur ligations is synthesized and characterized as an active-site model of the elusive sulfur-ligated FeIV[double bond, length as m-dash]O intermediates in non-heme iron oxygenases. The introduction of sulfur ligands weakens the Fe[double bond, length as m-dash]O bond and enhances the oxidative reactivity of the FeIV[double bond, length as m-dash]O unit with a diminished deuterium kinetic isotope effect, thereby providing a compelling rationale for nature's use of the cis-thiolate ligated oxoiron(iv) motif in key metabolic transformations.

16.
Angew Chem Int Ed Engl ; 60(12): 6752-6756, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33348460

ABSTRACT

S=2 oxoiron(IV) species act as reactive intermediates in the catalytic cycle of nonheme iron oxygenases. The few available synthetic S=2 FeIV =O complexes known to date are often limited to trigonal bipyramidal and very rarely to octahedral geometries. Herein we describe the generation and characterization of an S=2 pseudotetrahedral FeIV =O complex 2 supported by the sterically demanding 1,4,7-tri-tert-butyl-1,4,7-triazacyclononane ligand. Complex 2 is a very potent oxidant in hydrogen atom abstraction (HAA) reactions with large non-classical deuterium kinetic isotope effects, suggesting hydrogen tunneling contributions. For sterically encumbered substrates, direct HAA is impeded and an alternative oxidative asynchronous proton-coupled electron transfer mechanism prevails, which is unique within the nonheme oxoiron community. The high reactivity and the similar spectroscopic parameters make 2 one of the best electronic and functional models for a biological oxoiron(IV) intermediate of taurine dioxygenase (TauD-J).

17.
Dalton Trans ; 49(18): 6065-6073, 2020 May 14.
Article in English | MEDLINE | ID: mdl-32319492

ABSTRACT

The synthesis, spectroscopic characterization (infrared, electron paramagnetic resonance and X-ray absorption spectroscopies) and density functional theoretical calculations of a tetranuclear cobalt complex Co4L1 involving a nonheme ligand system, L1, supported on a stannoxane core are reported. Co4L1, similar to the previously reported hexanuclear cobalt complex Co6L2, shows a unique ability to catalyze dioxygen (O2) reduction, where product selectivity can be changed from a preferential 4e-/4H+ dioxygen-reduction (to water) to a 2e-/2H+ process (to hydrogen peroxide) only by increasing the temperature from -50 to 30 °C. Detailed mechanistic insights were obtained on the basis of kinetic studies on the overall catalytic reaction as well as by low-temperature spectroscopic (UV-Vis, resonance Raman and X-ray absorption spectroscopies) trapping of the end-on µ-1,2-peroxodicobalt(iii) intermediate 1. The Co4L1- and Co6L2-mediated O2-reduction reactions exhibit different reaction kinetics, and yield different ratios of the 2e-/2H+ and 4e-/4H+ products at -50 °C, which can be attributed to the different stabilities of the µ-1,2-peroxodicobalt(iii) intermediates formed upon dioxygen activation in the two cases. The deep mechanistic insights into the transition-metal mediated dioxygen reduction process that are obtained from the present study should serve as useful and broadly applicable principles for future design of more efficient catalysts in fuel cells.

18.
J Am Chem Soc ; 142(13): 5924-5928, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32168447

ABSTRACT

In soluble methane monooxygenase enzymes (sMMO), dioxygen (O2) is activated at a diiron(II) center to form an oxodiiron(IV) intermediate Q that performs the challenging oxidation of methane to methanol. An analogous mechanism of O2 activation at mono- or dinuclear iron centers is rare in the synthetic chemistry. Herein, we report a mononuclear non-heme iron(II)-cyclam complex, 1-trans, that activates O2 to form the corresponding iron(IV)-oxo complex, 2-trans, via a mechanism reminiscent of the O2 activation process in sMMO. The conversion of 1-trans to 2-trans proceeds via the intermediate formation of an iron(III)-superoxide species 3, which could be trapped and spectroscopically characterized at -50 °C. Surprisingly, 3 is a stronger oxygen atom transfer (OAT) agent than 2-trans; 3 performs OAT to 1-trans or PPh3 to yield 2-trans quantitatively. Furthermore, 2-trans oxidizes the aromatic C-H bonds of 2,6-di-tert-butylphenol, which, together with the strong OAT ability of 3, represents new domains of oxoiron(IV) and superoxoiron(III) reactivities.


Subject(s)
Heterocyclic Compounds/metabolism , Iron Compounds/metabolism , Oxygen/metabolism , Oxygenases/metabolism , Heterocyclic Compounds/chemistry , Iron Compounds/chemistry , Models, Molecular , Oxidation-Reduction , Oxygen/chemistry , Superoxides/chemistry , Superoxides/metabolism
19.
Nat Rev Chem ; 4(8): 404-419, 2020 Aug.
Article in English | MEDLINE | ID: mdl-37127969

ABSTRACT

High-valent metal-oxo species with multiply-bonded M-O groups have been proposed as key intermediates in many biological and abiological catalytic oxidation reactions. These intermediates are implicated as active oxidants in alkane hydroxylation, olefin epoxidation and other oxidation reactions. For example, [FeivO(porphyrinato•-)]+ cofactors bearing π-radical porphyrinato•- ligands oxidize organic substrates in cytochrome P450 enzymes, which are common to many life forms. Likewise, high-valent Mn-oxo species are active for H2O oxidation in photosystem II. The chemistry of these native reactive species has inspired chemists to prepare highly oxidized transition-metal complexes as functional mimics. Although many synthetic Fe-O and Mn-O complexes now exist, the analogous oxo complexes of the late transition metals (groups 9-11) are rare. Indeed, late-transition-metal-oxo complexes of tetragonal (fourfold) symmetry should be electronically unstable, a rule commonly referred to as the 'oxo wall'. A few late metal-oxos have been prepared by targeting other symmetries or unusual spin states. These complexes have been studied using spectroscopic and theoretical methods. This Review describes mononuclear non-haem Fe-O and Mn-O species, the nature of the oxo wall and recent advances in the preparation of oxo complexes of Co, Ni and Cu beyond the oxo wall.

20.
Mol Cell Biol ; 39(22)2019 11 15.
Article in English | MEDLINE | ID: mdl-31501275

ABSTRACT

The MYC oncogene is upregulated in human cancers by translocation, amplification, and mutation of cellular pathways that regulate Myc. Myc/Max heterodimers bind to E box sequences in the promoter regions of genes and activate transcription. The MYC inhibitor Omomyc can reduce the ability of MYC to bind specific box sequences in promoters of MYC target genes by binding directly to E box sequences as demonstrated by chromatin immunoprecipitation (CHIP). Here, we demonstrate by both a proximity ligation assay (PLA) and double chromatin immunoprecipitation (ReCHIP) that Omomyc preferentially binds to Max, not Myc, to mediate inhibition of MYC-mediated transcription by replacing MYC/MAX heterodimers with Omomyc/MAX heterodimers. The formation of Myc/Max and Omomyc/Max heterodimers occurs cotranslationally; Myc, Max, and Omomyc can interact with ribosomes and Max RNA under conditions in which ribosomes are intact. Taken together, our data suggest that the mechanism of action of Omomyc is to bind DNA as either a homodimer or a heterodimer with Max that is formed cotranslationally, revealing a novel mechanism to inhibit the MYC oncogene. We find that in vivo, Omomyc distributes quickly to kidneys and liver and has a short effective half-life in plasma, which could limit its use in vivo.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Genes, myc , Peptide Fragments/genetics , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Amino Acid Sequence , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Cell Line , Cell Line, Tumor , Chromatin Immunoprecipitation/methods , DNA/metabolism , DNA-Binding Proteins/metabolism , Female , HCT116 Cells , Humans , Mice , Mice, Inbred BALB C , Peptide Fragments/metabolism , Peptide Fragments/pharmacology , Promoter Regions, Genetic , Protein Binding , Proto-Oncogene Proteins c-myc/antagonists & inhibitors , Proto-Oncogene Proteins c-myc/pharmacology , Recombinant Proteins/pharmacology , Transcription, Genetic , Transcriptional Activation
SELECTION OF CITATIONS
SEARCH DETAIL
...