Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 132(18): 184002, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38759159

ABSTRACT

Understanding turbulence rests delicately on the conflict between Kolmogorov's 1941 theory of nonintermittent, space-filling energy dissipation characterized by a unique scaling exponent and the overwhelming evidence to the contrary of intermittency, multiscaling, and multifractality. Strangely, multifractality is not typically envisioned as a local flow property, variations in which might be clues exposing inroads into the fundamental unsolved issues of anomalous dissipation and finite time blowup. We present a simple construction of local multifractality and find that much of the dissipation field remains surprisingly monofractal à la Kolmogorov. Multifractality appears as small islands in this calm sea, its strength growing logarithmically with the local fluctuations in energy dissipation-a seemingly universal feature. These results suggest new ways to understand how singularities could arise and provide a fresh perspective on anomalous dissipation and intermittency. The simplicity and adaptability of our approach also holds great promise in applications ranging from climate sciences to medical data analysis.

2.
Phys Rev E ; 105(6): L063102, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35854491

ABSTRACT

We investigate the scaling form of appropriate timescales extracted from time-dependent correlation functions in rotating turbulent flows. In particular, we obtain precise estimates of the dynamic exponents z_{p}, associated with the timescales, and their relation with the more commonly measured equal-time exponents ζ_{p}. These theoretical predictions, obtained by using the multifractal formalism, are validated through extensive numerical simulations of a shell model for such rotating flows.

3.
Philos Trans A Math Phys Eng Sci ; 380(2218): 20210101, 2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35034492

ABSTRACT

Turbulence is unique in its appeal across physics, mathematics and engineering. And yet a microscopic theory, starting from the basic equations of hydrodynamics, still eludes us. In the last decade or so, new directions at the interface of physics and mathematics have emerged, which strengthens the hope of 'solving' one of the oldest problems in the natural sciences. This two-part theme issue unites these new directions on a common platform emphasizing the underlying complementarity of the physicists' and the mathematicians' approaches to a remarkably challenging problem. This article is part of the theme issue 'Scaling the turbulence edifice (part 1)'.

4.
Phys Rev E ; 106(6): L062601, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36671119

ABSTRACT

We investigate the effect of a two-dimensional, incompressible, turbulent flow on soft granular particles and show the emergence of a crystalline phase due to the interplay of Stokesian drag and short-range interparticle interactions. We quantify this phase through the bond order parameter and local density fluctuations and find a sharp transition between the crystalline and noncrystalline phases as a function of the Stokes number. Furthermore, the nature of preferential concentration, characterized by the correlation dimension, is significantly different from that of particle-laden flows in the absence of repulsive potentials.

5.
Phys Rev Lett ; 127(12): 124501, 2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34597108

ABSTRACT

Linking thermodynamic variables like temperature T and the measure of chaos, the Lyapunov exponents λ, is a question of fundamental importance in many-body systems. By using nonlinear fluid equations in one and three dimensions, we show that in thermalized flows λ∝sqrt[T], in agreement with results from frustrated spin systems. This suggests an underlying universality and provides evidence for recent conjectures on the thermal scaling of λ. We also reconcile seemingly disparate effects-equilibration on one hand and pushing systems out of equilibrium on the other-of many-body chaos by relating λ to T through the dynamical structures of the flow.

6.
Phys Rev Lett ; 127(11): 118001, 2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34558935

ABSTRACT

Bacterial swarms display intriguing dynamical states like active turbulence. Now, using a hydrodynamic model, we show that such dense active suspensions manifest superdiffusion, via Lévy walks, which masquerades as a crossover from ballistic to diffusive scaling in measurements of mean-squared displacements, and is tied to the emergence of hitherto undetected oscillatory streaks in the flow. Thus, while laying the theoretical framework of an emergent advantageous strategy in the collective behavior of microorganisms, our Letter underlines the essential differences between active and inertial turbulence.


Subject(s)
Models, Theoretical , Bacterial Physiological Phenomena , Cell Movement/physiology , Diffusion , Models, Biological , Movement
7.
Phys Rev Lett ; 125(3): 034501, 2020 Jul 17.
Article in English | MEDLINE | ID: mdl-32745414

ABSTRACT

We examine the dynamics of small anisotropic particles (spheroids) sedimenting through homogeneous isotropic turbulence using direct numerical simulations and theory. The gravity-induced inertial torque acting on sub-Kolmogorov spheroids leads to pronouncedly non-Gaussian orientation distributions localized about the broadside-on (to gravity) orientation. Orientation distributions and average settling velocities are obtained over a wide range of spheroid aspect ratios, Stokes, and Froude numbers. Orientational moments from the simulations compare well with analytical predictions in the inertialess rapid-settling limit, with both exhibiting a nonmonotonic dependence on spheroid aspect ratio. Deviations arise at Stokes numbers of order unity due to a spatially inhomogeneous particle concentration field resulting from a preferential sweeping effect; as a consequence, the time-averaged particle settling velocities exceed the orientationally averaged estimates.

8.
Phys Rev E ; 101(5-1): 053105, 2020 May.
Article in English | MEDLINE | ID: mdl-32575226

ABSTRACT

The interplay of inertia and elasticity is shown to have a significant impact on the transport of filamentary objects, modeled by bead-spring chains, in a two-dimensional turbulent flow. We show how elastic interactions among inertial beads result in a nontrivial sampling of the flow, ranging from entrapment within vortices to preferential sampling of straining regions. This behavior is quantified as a function of inertia and elasticity and is shown to be very different from free, noninteracting heavy particles, as well as inertialess chains [Picardo et al., Phys. Rev. Lett. 121, 244501 (2018)PRLTAO0031-900710.1103/PhysRevLett.121.244501]. In addition, by considering two limiting cases, of a heavy-headed and a uniformly inertial chain, we illustrate the critical role played by the mass distribution of such extended objects in their turbulent transport.

9.
Philos Trans A Math Phys Eng Sci ; 378(2175): 20190405, 2020 Jul 10.
Article in English | MEDLINE | ID: mdl-32564716

ABSTRACT

We show and explain how a long bead-spring chain, immersed in a homogeneous isotropic turbulent flow, preferentially samples vortical flow structures. We begin with an elastic, extensible chain which is stretched out by the flow, up to inertial-range scales. This filamentary object, which is known to preferentially sample the circular coherent vortices of two-dimensional (2D) turbulence, is shown here to also preferentially sample the intense, tubular, vortex filaments of three-dimensional (3D) turbulence. In the 2D case, the chain collapses into a tracer inside vortices. In the 3D case on the contrary, the chain is extended even in vortical regions, which suggests that the chain follows axially stretched tubular vortices by aligning with their axes. This physical picture is confirmed by examining the relative sampling behaviour of the individual beads, and by additional studies on an inextensible chain with adjustable bending-stiffness. A highly flexible, inextensible chain also shows preferential sampling in three dimensions, provided it is longer than the dissipation scale, but not much longer than the vortex tubes. This is true also for 2D turbulence, where a long inextensible chain can occupy vortices by coiling into them. When the chain is made inflexible, however, coiling is prevented and the extent of preferential sampling in two dimensions is considerably reduced. In three dimensions, on the contrary, bending stiffness has no effect, because the chain does not need to coil in order to thread a vortex tube and align with its axis. This article is part of the theme issue 'Fluid dynamics, soft matter and complex systems: recent results and new methods'.

10.
Phys Rev E ; 100(4-1): 043110, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31771019

ABSTRACT

We investigate the Lagrangian statistics of three-dimensional rotating turbulent flows through direct numerical simulations. We find that the emergence of coherent vortical structures because of the Coriolis force leads to a suppression of the "flight-crash" events reported by Xu et al. [Proc. Natl. Acad. Sci. (USA) 111, 7558 (2014)PNASA60027-842410.1073/pnas.1321682111]. We perform systematic studies to trace the origins of this suppression in the emergent geometry of the flow and show why such a Lagrangian measure of irreversibility may fail in the presence of rotation.

11.
Phys Rev E ; 99(6-1): 063107, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31330678

ABSTRACT

We investigate the role of intense vortical structures, similar to those in a turbulent flow, in enhancing collisions (and coalescences) which lead to the formation of large aggregates in particle-laden flows. By using a Burgers vortex model, we show, in particular, that vortex stretching significantly enhances sharp inhomogeneities in spatial particle densities, related to the rapid ejection of particles from intense vortices. Furthermore our work shows how such spatial clustering leads to an enhancement of collision rates and extreme statistics of collisional velocities. We also study the role of polydisperse suspensions in this enhancement. Our work uncovers an important principle, which, if valid for realistic turbulent flows, may be a factor in how small nuclei water droplets in warm clouds can aggregate to sizes large enough to trigger rain.

12.
Phys Rev E ; 98(2-1): 021101, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30253548

ABSTRACT

We study the rotational dynamics of inertial disks and rods in three-dimensional, homogeneous, isotropic turbulence. In particular, we show how the alignment and the decorrelation timescales of such spheroids depend, critically, on both the level of inertia and the aspect ratio of these particles. These results illustrate the effect of inertia-which leads to a preferential sampling of the local flow geometry-on the statistics of both disks and rods in a turbulent flow. Our results are important for a variety of natural and industrial settings where the turbulent transport of asymmetric, spheroidal inertial particles is ubiquitous.

13.
Phys Rev Lett ; 121(2): 024101, 2018 Jul 13.
Article in English | MEDLINE | ID: mdl-30085710

ABSTRACT

We find that the effects of a localized perturbation in a chaotic classical many-body system-the classical Heisenberg chain at infinite temperature-spread ballistically with a finite speed even when the local spin dynamics is diffusive. We study two complementary aspects of this butterfly effect: the rapid growth of the perturbation, and its simultaneous ballistic (light-cone) spread, as characterized by the Lyapunov exponents and the butterfly speed, respectively. We connect this to recent studies of the out-of-time-ordered commutators (OTOC), which have been proposed as an indicator of chaos in a quantum system. We provide a straightforward identification of the OTOC with a natural correlator in our system and demonstrate that many of its interesting qualitative features are present in the classical system. Finally, by analyzing the scaling forms, we relate the growth, spread, and propagation of the perturbation with the growth of one-dimensional interfaces described by the Kardar-Parisi-Zhang equation.

14.
Phys Rev Lett ; 121(24): 244501, 2018 Dec 14.
Article in English | MEDLINE | ID: mdl-30608752

ABSTRACT

A string of tracers interacting elastically in a turbulent flow is shown to have a dramatically different behavior when compared to the noninteracting case. In particular, such an elastic chain shows strong preferential sampling of the turbulent flow unlike the usual tracer limit: An elastic chain is trapped in the vortical regions. The degree of preferential sampling and its dependence on the elasticity of the chain is quantified via the Okubo-Weiss parameter. The effect of modifying the deformability of the chain via the number of links that form it is also examined.

15.
Sci Rep ; 7(1): 12231, 2017 09 25.
Article in English | MEDLINE | ID: mdl-28947811

ABSTRACT

We compare the collision rates and the typical collisional velocities amongst droplets of different sizes in a poly-disperse suspension advected by two- and three-dimensional turbulent flows. We show that the collision rate is enhanced in the transient phase for droplets for which the size-ratios between the colliding pairs is large as well as obtain precise theoretical estimates of the dependence of the impact velocity of particles-pairs on their relative sizes. These analytical results are validated against data from our direct numerical simulations. Our results suggest that an explanation of the rapid growth of droplets, e.g., in warm clouds, may well lie in the dynamics of particles in transient phases where increased collision rates between large and small particles could result in runaway process. Our results are also important to model coalescence or fragmentation (depending on the impact velocities) and will be crucial, for example, in obtaining precise coalescence kernels in such systems.

16.
Phys Rev E ; 94(5-1): 053101, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27967027

ABSTRACT

We present a study of the multiscaling of time-dependent velocity and magnetic-field structure functions in homogeneous, isotropic magnetohydrodynamic (MHD) turbulence in three dimensions. We generalize the formalism that has been developed for analogous studies of time-dependent structure functions in fluid turbulence to MHD. By carrying out detailed numerical studies of such time-dependent structure functions in a shell model for three-dimensional MHD turbulence, we obtain both equal-time and dynamic scaling exponents.

17.
Phys Rev E ; 93(3): 031102, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27078283

ABSTRACT

Smoluchowski's coagulation kinetics is here shown to fail when the coalescing species are dilute and transported by a turbulent flow. The intermittent Lagrangian motion involves correlated violent events that lead to an unexpected rapid occurrence of the largest particles. This new phenomena is here quantified in terms of the anomalous scaling of turbulent three-point motion, leading to significant corrections in macroscopic processes that are critically sensitive to the early-stage emergence of large embryonic aggregates, as in planet formation or rain precipitation.

18.
Phys Rev E ; 93(3): 033109, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27078449

ABSTRACT

We present theoretical and numerical results for the one-dimensional stochastically forced Burgers equation decimated on a fractal Fourier set of dimension D. We investigate the robustness of the energy transfer mechanism and of the small-scale statistical fluctuations by changing D. We find that a very small percentage of mode-reduction (D ≲ 1) is enough to destroy most of the characteristics of the original nondecimated equation. In particular, we observe a suppression of intermittent fluctuations for D < 1 and a quasisingular transition from the fully intermittent (D=1) to the nonintermittent case for D ≲ 1. Our results indicate that the existence of strong localized structures (shocks) in the one-dimensional Burgers equation is the result of highly entangled correlations amongst all Fourier modes.

19.
Article in English | MEDLINE | ID: mdl-25375426

ABSTRACT

We show, by using direct numerical simulations and theory, how, by increasing the order of dissipativity (α) in equations of hydrodynamics, there is a transition from a dissipative to a conservative system. This remarkable result, already conjectured for the asymptotic case α→∞ [U. Frisch et al., Phys. Rev. Lett. 101, 144501 (2008)], is now shown to be true for any large, but finite, value of α greater than a crossover value αcrossover. We thus provide a self-consistent picture of how dissipative systems, under certain conditions, start behaving like conservative systems and hence elucidate the subtle connection between equilibrium statistical mechanics and out-of-equilibrium turbulent flows.

20.
Phys Rev Lett ; 112(18): 184501, 2014 May 09.
Article in English | MEDLINE | ID: mdl-24856699

ABSTRACT

Heavy particles suspended in a turbulent flow settle faster than in a still fluid. This effect stems from a preferential sampling of the regions where the fluid flows downward and is quantified here as a function of the level of turbulence, of particle inertia, and of the ratio between gravity and turbulent accelerations. By using analytical methods and detailed, state-of-the-art numerical simulations, settling is shown to induce an effective horizontal two-dimensional dynamics that increases clustering and reduce relative velocities between particles. These two competing effects can either increase or decrease the geometrical collision rates between same-size particles and are crucial for realistic modeling of coalescing particles.

SELECTION OF CITATIONS
SEARCH DETAIL