Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Nat Cancer ; 4(10): 1455-1473, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37653141

ABSTRACT

Glioblastoma (GBM) tumors are enriched in immune-suppressive myeloid cells and are refractory to immune checkpoint therapy (ICT). Targeting epigenetic pathways to reprogram the functional phenotype of immune-suppressive myeloid cells to overcome resistance to ICT remains unexplored. Single-cell and spatial transcriptomic analyses of human GBM tumors demonstrated high expression of an epigenetic enzyme-histone 3 lysine 27 demethylase (KDM6B)-in intratumoral immune-suppressive myeloid cell subsets. Importantly, myeloid cell-specific Kdm6b deletion enhanced proinflammatory pathways and improved survival in GBM tumor-bearing mice. Mechanistic studies showed that the absence of Kdm6b enhances antigen presentation, interferon response and phagocytosis in myeloid cells by inhibition of mediators of immune suppression including Mafb, Socs3 and Sirpa. Further, pharmacological inhibition of KDM6B mirrored the functional phenotype of Kdm6b-deleted myeloid cells and enhanced anti-PD1 efficacy. This study thus identified KDM6B as an epigenetic regulator of the functional phenotype of myeloid cell subsets and a potential therapeutic target for enhanced response to ICT.


Subject(s)
Glioblastoma , Humans , Mice , Animals , Glioblastoma/drug therapy , Glioblastoma/genetics , Histone Demethylases/genetics , Gene Expression Profiling , Phenotype , Jumonji Domain-Containing Histone Demethylases/genetics
2.
Cell ; 186(8): 1652-1669, 2023 04 13.
Article in English | MEDLINE | ID: mdl-37059068

ABSTRACT

Immune checkpoint therapy (ICT) has dramatically altered clinical outcomes for cancer patients and conferred durable clinical benefits, including cure in a subset of patients. Varying response rates across tumor types and the need for predictive biomarkers to optimize patient selection to maximize efficacy and minimize toxicities prompted efforts to unravel immune and non-immune factors regulating the responses to ICT. This review highlights the biology of anti-tumor immunity underlying response and resistance to ICT, discusses efforts to address the current challenges with ICT, and outlines strategies to guide the development of subsequent clinical trials and combinatorial efforts with ICT.


Subject(s)
Immunotherapy , Neoplasms , Humans , B7-H1 Antigen , Neoplasms/drug therapy , Clinical Trials as Topic , Immune Checkpoint Inhibitors/administration & dosage
3.
Viruses ; 15(2)2023 02 16.
Article in English | MEDLINE | ID: mdl-36851762

ABSTRACT

Severe COVID-19 frequently features a systemic deluge of cytokines. Circulating cytokines that can stratify risks are useful for more effective triage and management. Here, we ran a machine-learning algorithm on a dataset of 36 plasma cytokines in a cohort of severe COVID-19 to identify cytokine/s useful for describing the dynamic clinical state in multiple regression analysis. We performed RNA-sequencing of circulating blood cells collected at different time-points. From a Bayesian Information Criterion analysis, a combination of interleukin-8 (IL-8), Eotaxin, and Interferon-γ (IFNγ) was found to be significantly linked to blood oxygenation over seven days. Individually testing the cytokines in receiver operator characteristics analyses identified IL-8 as a strong stratifier for clinical outcomes. Circulating IL-8 dynamics paralleled disease course. We also revealed key transitions in immune transcriptome in patients stratified for circulating IL-8 at three time-points. The study identifies plasma IL-8 as a key pathogenic cytokine linking systemic hyper-inflammation to the clinical outcomes in COVID-19.


Subject(s)
COVID-19 , Interleukin-8 , Humans , Bayes Theorem , Cytokines , Disease Progression
4.
Nat Rev Immunol ; 23(2): 106-120, 2023 02.
Article in English | MEDLINE | ID: mdl-35697799

ABSTRACT

Myeloid cells are the most abundant immune components of the tumour microenvironment, where they have a variety of functions, ranging from immunosuppressive to immunostimulatory roles. The myeloid cell compartment comprises many different cell types, including monocytes, macrophages, dendritic cells and granulocytes, that are highly plastic and can differentiate into diverse phenotypes depending on cues received from their microenvironment. In the past few decades, we have gained a better appreciation of the complexity of myeloid cell subsets and how they are involved in tumour progression and resistance to cancer therapies, including immunotherapy. In this Review, we highlight key features of monocyte and macrophage biology that are being explored as potential targets for cancer therapies and what aspects of myeloid cells need a deeper understanding to identify rational combinatorial strategies to improve clinical outcomes of patients with cancer. We discuss therapies that aim to modulate the functional activities of myeloid cell populations, impacting their recruitment, survival and activity in the tumour microenvironment, acting at the level of cell surface receptors, signalling pathways, epigenetic machinery and metabolic regulators. We also describe advances in the development of genetically engineered myeloid cells for cancer therapy.


Subject(s)
Myeloid Cells , Neoplasms , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Macrophages , Immunotherapy , Monocytes/metabolism , Tumor Microenvironment
5.
Mayo Clin Proc Innov Qual Outcomes ; 6(6): 511-524, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36117954

ABSTRACT

Objective: To assess the clinical and immunological benefits of passive immunization using convalescent plasma therapy (CPT). Materials and Methods: A series of subclass analyses were performed on the previously published outcome data and accompanying clinical metadata from a completed randomized controlled trial (RCT) (Clinical Trial Registry of India, number CTRI/2020/05/025209). The subclass analyses were performed on the outcome data and accompanying clinical metadata from a completed RCT (patient recruitment between May 15, 2020 and October 31, 2020). Data on the plasma abundance of a large panel of cytokines from the same cohort of patients were also used to characterize the heterogeneity of the putative anti-inflammatory function of convalescent plasma (CP) in addition to passively providing neutralizing antibodies. Results: Although the primary clinical outcomes were not significantly different in the RCT across all age groups, significant immediate mitigation of hypoxia, reduction in hospital stay, and significant survival benefit were registered in younger (<67 years in our cohort) patients with severe coronavirus disease 2019 and acute respiratory distress syndrome on receiving CPT. In addition to neutralizing the antibody content of CP, its anti-inflammatory proteome, by attenuation of the systemic cytokine deluge, significantly contributed to the clinical benefits of CPT. Conclusion: Subgroup analyses revealed that clinical benefits of CPT in severe coronavirus disease 2019 are linked to the anti-inflammatory protein content of CP apart from the anti-severe acute respiratory syndrome coronavirus 2 neutralizing antibody content.

6.
Nat Commun ; 13(1): 383, 2022 01 19.
Article in English | MEDLINE | ID: mdl-35046397

ABSTRACT

A single center open label phase 2 randomised control trial (Clinical Trial Registry of India No. CTRI/2020/05/025209) was done to assess clinical and immunological benefits of passive immunization using convalescent plasma therapy. At the Infectious Diseases and Beleghata General Hospital in Kolkata, India, 80 patients hospitalized with severe COVID-19 disease and fulfilling the inclusion criteria (aged more than 18 years, with either mild ARDS having PaO2/FiO2 200-300 or moderate ARDS having PaO2/FiO2 100-200, not on mechanical ventilation) were recruited and randomized into either standard of care (SOC) arm (N = 40) or the convalescent plasma therapy (CPT) arm (N = 40). Primary outcomes were all-cause mortality by day 30 of enrolment and immunological correlates of response to therapy if any, for which plasma abundance of a large panel of cytokines was quantitated before and after intervention to assess the effect of CPT on the systemic hyper-inflammation encountered in these patients. The secondary outcomes were recovery from ARDS and time taken to negative viral RNA PCR as well as to report any adverse reaction to plasma therapy. Transfused convalescent plasma was characterized in terms of its neutralizing antibody content as well as proteome. The trial was completed and it was found that primary outcome of all-cause mortality was not significantly different among severe COVID-19 patients with ARDS randomized to two treatment arms (Mantel-Haenszel Hazard Ratio 0.6731, 95% confidence interval 0.3010-1.505, with a P value of 0.3424 on Mantel-Cox Log-rank test). No adverse effect was reported with CPT. In severe COVID-19 patients with mild or moderate ARDS no significant clinical benefit was registered in this clinical trial with convalescent plasma therapy in terms of prespecified outcomes.


Subject(s)
COVID-19/therapy , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/immunology , Antibodies, Viral/therapeutic use , Blood Donors , COVID-19/immunology , COVID-19/virology , Cytokines/blood , Female , Hospitals, General , Humans , Immunity, Humoral , Immunization, Passive , India , Inflammation , Male , Phylogeny , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/virology , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Survival Analysis , Treatment Outcome , Viral Load , COVID-19 Serotherapy
7.
Front Immunol ; 12: 738093, 2021.
Article in English | MEDLINE | ID: mdl-34777349

ABSTRACT

Disease caused by SARS-CoV-2 coronavirus (COVID-19) led to significant morbidity and mortality worldwide. A systemic hyper-inflammation characterizes severe COVID-19 disease, often associated with acute respiratory distress syndrome (ARDS). Blood biomarkers capable of risk stratification are of great importance in effective triage and critical care of severe COVID-19 patients. Flow cytometry and next-generation sequencing were done on peripheral blood cells and urokinase-type plasminogen activator receptor (suPAR), and cytokines were measured from and mass spectrometry-based proteomics was done on plasma samples from an Indian cohort of COVID-19 patients. Publicly available single-cell RNA sequencing data were analyzed for validation of primary data. Statistical analyses were performed to validate risk stratification. We report here higher plasma abundance of suPAR, expressed by an abnormally expanded myeloid cell population, in severe COVID-19 patients with ARDS. The plasma suPAR level was found to be linked to a characteristic plasma proteome, associated with coagulation disorders and complement activation. Receiver operator characteristic curve analysis to predict mortality identified a cutoff value of suPAR at 1,996.809 pg/ml (odds ratio: 2.9286, 95% confidence interval 1.0427-8.2257). Lower-than-cutoff suPAR levels were associated with a differential expression of the immune transcriptome as well as favorable clinical outcomes, in terms of both survival benefit (hazard ratio: 0.3615, 95% confidence interval 0.1433-0.912) and faster disease remission in our patient cohort. Thus, we identified suPAR as a key pathogenic circulating molecule linking systemic hyperinflammation to the hypercoagulable state and stratifying clinical outcomes in severe COVID-19 patients with ARDS.


Subject(s)
COVID-19/blood , Receptors, Urokinase Plasminogen Activator/blood , SARS-CoV-2 , Adult , Aged , Blood Coagulation Disorders/blood , Blood Coagulation Disorders/immunology , Blood Proteins/analysis , COVID-19/immunology , Cytokines/blood , Humans , Inflammation/blood , Inflammation/immunology , Middle Aged , Myeloid Cells/immunology , Proteome/analysis , Randomized Controlled Trials as Topic , Respiratory Distress Syndrome/blood , Respiratory Distress Syndrome/immunology , Severity of Illness Index , Young Adult
8.
J Med Chem ; 64(13): 9279-9301, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34142551

ABSTRACT

Several toll-like receptors (TLRs) reside inside endosomes of specific immune cells-among them, aberrant activation of TLR7 and TLR9 is implicated in myriad contexts of autoimmune diseases, making them promising therapeutic targets. However, small-molecule TLR7 and TLR9 antagonists are not yet available for clinical use. We illustrate here the importance of C2, C6, and N9 substitutions in the purine scaffold for antagonism to TLR7 and TLR9 through structure-activity relationship studies using cellular reporter assays and functional studies on primary human immune cells. Further in vitro and in vivo pharmacokinetic studies identified an orally bioavailable lead compound 29, with IC50 values of 0.08 and 2.66 µM against TLR9 and TLR7, respectively. Isothermal titration calorimetry excluded direct TLR ligand-antagonist interactions. In vivo antagonism efficacy against mouse TLR9 and therapeutic efficacy in a preclinical murine model of psoriasis highlighted the potential of compound 29 as a therapeutic candidate in relevant autoimmune contexts.


Subject(s)
Purines/pharmacology , Toll-Like Receptor 7/antagonists & inhibitors , Toll-Like Receptor 9/antagonists & inhibitors , Administration, Oral , Animals , Cell Line , Dose-Response Relationship, Drug , Humans , Mice , Mice, Inbred C57BL , Molecular Structure , Purines/administration & dosage , Purines/chemistry , Rats , Structure-Activity Relationship
9.
J Med Chem ; 63(9): 4776-4789, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32302115

ABSTRACT

Toll-like receptor 7 (TLR7) is an established therapeutic target in myriad autoimmune disorders, but no TLR7 antagonist is available for clinical use to date. Herein, we report a purine scaffold TLR7 antagonist, first-of-its-kind to our knowledge, which was developed by rationally dissecting the structural requirements for TLR7-targeted activity for a purine scaffold. Specifically, we identified a singular chemical switch at C-2 that could make a potent purine scaffold TLR7 agonist to lose agonism and acquire antagonist activity, which could further be potentiated by the introduction of an additional basic center at C-6. We ended up developing a clinically relevant TLR7 antagonist with favorable pharmacokinetics and 70.8% oral bioavailability in mice. Moreover, the TLR7 antagonists depicted excellent selectivity against TLR8. To further validate the in vivo applicability of this novel TLR7 antagonist, we demonstrated its excellent efficacy in preventing TLR7-induced pathology in a preclinical murine model of psoriasis.


Subject(s)
Dermatologic Agents/therapeutic use , Purines/therapeutic use , Toll-Like Receptor 7/agonists , Toll-Like Receptor 7/antagonists & inhibitors , Animals , Binding Sites , Caco-2 Cells , Dermatologic Agents/chemical synthesis , Dermatologic Agents/metabolism , Dermatologic Agents/pharmacokinetics , HEK293 Cells , Humans , Male , Mice, Inbred C57BL , Molecular Docking Simulation , Molecular Structure , Psoriasis/drug therapy , Psoriasis/pathology , Purines/chemical synthesis , Purines/metabolism , Purines/pharmacokinetics , Skin/pathology , Structure-Activity Relationship , Toll-Like Receptor 7/metabolism
10.
Cytokine ; 125: 154822, 2020 01.
Article in English | MEDLINE | ID: mdl-31470365

ABSTRACT

Plasmacytoid dendritic cells (pDCs) are major producers of type I interferons in response to activation of endosomal toll-like receptors (TLRs), e.g. TLR9. While a number of cell biological and intracellular signaling events associated with TLR9 activation in pDCs have been studied, role of free calcium (Ca2+) is not clear. We found that influx of extracellular Ca2+ is crucial for TLR9 mediated IFNα production by human pDCs. We also unraveled a role of Ca2+ in potentiating cellular uptake of self-DNA in complex with the cathelicidin antimicrobial peptide, LL37, an endogenous ligand for human TLR9 in autoimmune contexts. IFNα in response to TLR9 activation, by CpG oligonucleotides, is tuned within a window of Ca2+ concentration, through a bimodal regulatory switch, by differential engagement of Ca2+/calmodulin-dependent protein kinase II (CAMKII) and calcineurin phosphatase (CALN). Ca2+ signaling for TLR9 activation at physiologic calcium concentrations depends on CAMKII recruitment, while inhibition of TLR9 activation at supraphysiologic calcium concentrations is mediated by CALN. This bimodal regulation was masked in response to physiological peptide-DNA complexes, presumably due to potentiation of complex formation and increased cellular uptake in higher Ca2+ concentrations. Thus infection susceptibility associated with relevant clinical contexts as well as role of Ca2+ signaling in autoimmune diseases warrant further investigations for novel pathogenetic cues involving pDC function.


Subject(s)
Calcium/metabolism , Dendritic Cells/immunology , Signal Transduction/immunology , Toll-Like Receptor 9/metabolism , Antimicrobial Cationic Peptides/metabolism , Calcineurin/metabolism , Calcium/pharmacology , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cells, Cultured , DNA/immunology , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Flow Cytometry , Humans , Interferon-alpha/metabolism , Oligodeoxyribonucleotides/pharmacology , Cathelicidins
11.
Front Immunol ; 10: 1878, 2019.
Article in English | MEDLINE | ID: mdl-31440253

ABSTRACT

Plasmacytoid dendritic cells are the most efficient producers of type I interferons, viz. IFNα, in the body and thus have the ability to influence anti-tumor immune responses. But repression of effective intra-tumoral pDC activation is a key immuno-evasion strategy exhibited in tumors-tumor-recruited pDCs are rendered "tolerogenic," characterized by deficiency in IFNα induction and ability to expand regulatory T cells in situ. But the tumor-derived factors that drive this functional reprogramming of intra-tumoral pDCs are not established. In this study we aimed at exploring if intra-tumoral abundance of the oncometabolite lactate influences intra-tumoral pDC function. We found that lactate attenuates IFNα induction by pDCs mediated by intracellular Ca2+ mobilization triggered by cell surface GPR81 receptor as well as directly by cytosolic import of lactate in pDCs through the cell surface monocarboxylate transporters, affecting cellular metabolism needed for effective pDC activation. We also found that lactate enhances tryptophan metabolism and kynurenine production by pDCs which contribute to induction of FoxP3+ CD4+ regulatory T cells, the major immunosuppressive immune cell subset in tumor microenvironment. We validated these mechanisms of lactate-driven pDC reprogramming by looking into tumor recruited pDCs isolated from patients with breast cancers as well as in a preclinical model of breast cancer in mice. Thus, we discovered a hitherto unknown link between intra-tumoral abundance of an oncometabolite resulting from metabolic adaptation in cancer cells and the pro-tumor tolerogenic function of tumor-recruited pDCs, revealing new therapeutic targets for potentiating anti-cancer immune responses.


Subject(s)
Breast Neoplasms/immunology , Breast Neoplasms/metabolism , Dendritic Cells/immunology , Lactic Acid/immunology , Tumor Escape/physiology , Animals , Cellular Reprogramming/immunology , Dendritic Cells/metabolism , Female , Humans , Lactic Acid/metabolism , Mice , T-Lymphocytes, Regulatory/immunology , Tumor Microenvironment/immunology
12.
J Immunol ; 202(6): 1674-1679, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30728209

ABSTRACT

Systemic lupus erythematosus (SLE) is a systemic autoimmune disease, characterized by loss of tolerance toward self nuclear Ags. Systemic induction of type I IFNs plays a pivotal role in SLE, a major source of type I IFNs being the plasmacytoid dendritic cells (pDCs). Several genes have been linked with susceptibility to SLE in genome-wide association studies. We aimed at exploring the role of one such gene, α/ß-hydrolase domain-containing 6 (ABHD6), in regulation of IFN-α induction in SLE patients. We discovered a regulatory role of ABHD6 in human pDCs through modulating the local abundance of its substrate, the endocannabinoid 2-arachidonyl glycerol (2-AG), and elucidated a hitherto unknown cannabinoid receptor 2 (CB2)-mediated regulatory role of 2-AG on IFN-α induction by pDCs. We also identified an ABHD6High SLE endophenotype wherein reduced local abundance of 2-AG relieves the CB2-mediated steady-state resistive tuning on IFN-α induction by pDCs, thereby contributing to SLE pathogenesis.


Subject(s)
Dendritic Cells/immunology , Endocannabinoids/metabolism , Interferon-gamma/biosynthesis , Lupus Erythematosus, Systemic/immunology , Monoacylglycerol Lipases/immunology , Adult , Arachidonic Acids/immunology , Arachidonic Acids/metabolism , Dendritic Cells/metabolism , Endocannabinoids/immunology , Endophenotypes , Female , Gene Expression Regulation/immunology , Glycerides/immunology , Glycerides/metabolism , Humans , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/metabolism , Male , Middle Aged , Monoacylglycerol Lipases/genetics , Receptor, Cannabinoid, CB2/immunology , Receptor, Cannabinoid, CB2/metabolism
13.
Eur J Med Chem ; 159: 187-205, 2018 Nov 05.
Article in English | MEDLINE | ID: mdl-30292896

ABSTRACT

TLR9 is one of the major innate immune receptors expressed in the endosomes of pDCs and B cells in humans. Aberrant TLR9 activation is implicated in several autoimmune and metabolic disorders as well as in sepsis, making this receptor an important therapeutic target, though specific TLR9 antagonists are yet to be available for clinical use. Here we elucidate the importance of specific physiochemical properties through substitution patterns in quinazoline scaffold to achieve potent hTLR9 inhibition at < 50 nM as well as > 600 fold selectivity against hTLR7, another closely related TLR that shares downstream signaling with TLR9 but plays distinct roles in physiology and pathology. Assays were performed using hPBMC and reporter cell lines. Favorable in vitro ADME profile, pharmacokinetics as well as validation in a clinically relevant in vivo TLR9-inhibition efficacy model in mice establish these novel TLR9-antagonists as candidate therapeutic agents in relevant clinical contexts.


Subject(s)
Toll-Like Receptor 9/antagonists & inhibitors , Animals , Cell Line , Cell Survival/drug effects , Dose-Response Relationship, Drug , Erythrocytes/drug effects , Hep G2 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Molecular Structure , Structure-Activity Relationship , Toll-Like Receptor 7/antagonists & inhibitors
14.
J Immunol ; 200(4): 1255-1260, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29330322

ABSTRACT

TCRs recognize peptides on MHC molecules and induce downstream signaling, leading to activation and clonal expansion. In addition to the strength of the interaction of TCRs with peptides on MHC molecules, mechanical forces contribute to optimal T cell activation, as reflected by the superior efficiency of immobilized TCR-cross-linking Abs compared with soluble Abs in TCR triggering, although a dedicated mechanotransduction module is not identified. We found that the professional mechanosensor protein Piezo1 is critically involved in human T cell activation. Although a deficiency in Piezo1 attenuates downstream events on ex vivo TCR triggering, a Piezo1 agonist can obviate the need to immobilize TCR-cross-linking Abs. Piezo1-driven Ca2+ influx, leading to calpain activation and organization of cortical actin scaffold, links this mechanosensor to optimal TCR signaling. Thus, we discovered a hitherto unknown regulatory mechanism for human T cell activation and provide the first evidence, to our knowledge, for the involvement of Piezo1 mechanosensors in immune regulation.


Subject(s)
Ion Channels/immunology , Lymphocyte Activation/immunology , Mechanotransduction, Cellular/immunology , T-Lymphocytes/immunology , Humans , Mechanoreceptors/immunology
15.
Diabetes ; 65(11): 3440-3452, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27561727

ABSTRACT

In obese individuals, visceral adipose tissue (VAT) is the seat of chronic low-grade inflammation (metaflammation), but the mechanistic link between increased adiposity and metaflammation largely remains unclear. In obese individuals, deregulation of a specific adipokine, chemerin, contributes to innate initiation of metaflammation by recruiting circulating plasmacytoid dendritic cells (pDCs) into VAT through chemokine-like receptor 1 (CMKLR1). Adipose tissue-derived high-mobility group B1 (HMGB1) protein activates Toll-like receptor 9 (TLR9) in the adipose-recruited pDCs by transporting extracellular DNA through receptor for advanced glycation end products (RAGE) and induces production of type I interferons (IFNs). Type I IFNs in turn help in proinflammatory polarization of adipose-resident macrophages. IFN signature gene expression in VAT correlates with both adipose tissue and systemic insulin resistance (IR) in obese individuals, which is represented by ADIPO-IR and HOMA2-IR, respectively, and defines two subgroups with different susceptibility to IR. Thus, this study reveals a pathway that drives adipose tissue inflammation and consequent IR in obesity.


Subject(s)
Dendritic Cells/metabolism , Toll-Like Receptor 9/metabolism , Adipose Tissue/metabolism , Adult , Aged , Aged, 80 and over , Female , Glycation End Products, Advanced/metabolism , HMGB1 Protein/genetics , HMGB1 Protein/metabolism , Humans , Inflammation/metabolism , Insulin Resistance/genetics , Insulin Resistance/physiology , Interferon Type I/genetics , Interferon Type I/metabolism , Intra-Abdominal Fat/metabolism , Male , Middle Aged , Receptors, Chemokine , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Toll-Like Receptor 9/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...