Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nitric Oxide ; 60: 16-23, 2016 11 30.
Article in English | MEDLINE | ID: mdl-27592386

ABSTRACT

Inhalation of nitric oxide (NO) produces selective pulmonary vasodilation without dilating the systemic circulation. However, the current NO/N2 cylinder delivery system is cumbersome and expensive. We developed a lightweight, portable, and economical device to generate NO from air by pulsed electrical discharge. The objective of this study was to investigate and optimize the purity and safety of NO generated by this device. By using low temperature streamer discharges in the plasma generator, we produced therapeutic levels of NO with very low levels of nitrogen dioxide (NO2) and ozone. Despite the low temperature, spark generation eroded the surface of the electrodes, contaminating the gas stream with metal particles. During prolonged NO generation there was gradual loss of the iridium high-voltage tip (-90 µg/day) and the platinum-nickel ground electrode (-55 µg/day). Metal particles released from the electrodes were trapped by a high-efficiency particulate air (HEPA) filter. Quadrupole mass spectroscopy measurements of effluent gas during plasma NO generation showed that a single HEPA filter removed all of the metal particles. Mice were exposed to breathing 50 parts per million of electrically generated NO in air for 28 days with only a scavenger and no HEPA filter; the mice did not develop pulmonary inflammation or structural changes and iridium and platinum particles were not detected in the lungs of these mice. In conclusion, an electric plasma generator produced therapeutic levels of NO from air; scavenging and filtration effectively eliminated metallic impurities from the effluent gas.


Subject(s)
Air Pollutants/isolation & purification , Drug Contamination/prevention & control , Nitric Oxide/administration & dosage , Administration, Inhalation , Air Filters , Air Pollutants/analysis , Air Pollutants/chemistry , Animals , Electrodes , Filtration , Iridium/chemistry , Lung/chemistry , Lung/drug effects , Male , Metals, Heavy/analysis , Metals, Heavy/chemistry , Metals, Heavy/isolation & purification , Mice , Mice, Inbred C57BL , Nitric Oxide/adverse effects , Nitric Oxide/chemistry , Temperature
2.
J Biomed Mater Res A ; 102(9): 3033-48, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24115308

ABSTRACT

Angio- and osteogenesis following the two-stage (TS) implantation of the skin- and bone-integrated pylon seeded with autologous fibroblasts was evaluated. Two consecutive animal substudies were undertaken: intramedullary subcutaneous implantation (15 rabbits) and a TS transcutaneous implantation (12 rabbits). We observed enhanced osseointegrative properties of the intramedullary porous component seeded with fibroblasts induced into osteoblast differentiation, as compared to the untreated porous titanium pylon. The three-phase scintigraphy and subsequent histological analysis showed that the level of osteogenesis was 1.5-fold higher than in the control group, and significantly so (p < 0.05). The biocompatibility was further proved by the absence of inflammatory response or encapsulation and sequestration on the histology assay. Treatment of the transcutaneous component with autologous fibroblasts was associated with nearly a 2-fold decrease in the period required for the ingrowth of dermal and subdermal soft tissues into the implant surface, as compared to the untreated porous titanium component. Direct dermal attachment to the transcutaneous implant prevented superficial and deep periprosthetic infections in rabbits in vivo.


Subject(s)
Artificial Limbs , Fibroblasts/transplantation , Osseointegration , Osteoblasts/cytology , Tissue Scaffolds/chemistry , Animals , Fibroblasts/cytology , Male , Osteogenesis , Prosthesis Design , Rabbits , Titanium/chemistry
3.
J Rehabil Res Dev ; 46(3): 315-30, 2009.
Article in English | MEDLINE | ID: mdl-19675985

ABSTRACT

This article presents recent results in the development of the skin and bone integrated pylon (SBIP) intended for direct skeletal attachment of limb prostheses. In our previous studies of the porous SBIP-1 and SBIP-2 prototypes, the bond site between the porous pylons and residuum bone and skin did not show the inflammation characteristically observed when solid pylons are used. At the same time, porosity diminished the strength of the pylon. To find a reasonable balance between the biological conductivity and the strength of the porous pylon, we developed a mathematical model of the composite permeable structure. A novel manufacturing process was implemented, and the new SBIP-3 prototype was tested mechanically. The minimal strength requirements established earlier for the SBIP were exceeded threefold. The first histopathological analysis of skin, bone, and the implanted SBIP-2 pylons was conducted on two rats and one cat. The histopathological analysis provided new evidence of inflammation-free, deep ingrowth of skin and bone cells throughout the SBIP structure.


Subject(s)
Artificial Limbs , Models, Theoretical , Osseointegration , Skin Physiological Phenomena , Animals , Bone and Bones/pathology , Cats , Materials Testing , Prosthesis Design , Rats , Skin/pathology
4.
J Rehabil Res Dev ; 44(5): 723-38, 2007.
Article in English | MEDLINE | ID: mdl-17943684

ABSTRACT

This article presents results of the further development and testing of the "skin and bone integrated pylon" (SBIP-1) for percutaneous (through skin) connection of the residual bone with an external limb prosthesis. We investigated a composite structure (called the SBIP-2) made of titanium particles and fine wires using mathematical modeling and mechanical testing. Results showed that the strength of the pylon was comparable with that of anatomical bone. In vitro and in vivo animal studies on 30 rats showed that the reinforcement of the composite pylon did not compromise its previously shown capacity for inviting skin and bone cell ingrowth through the device. These findings provide evidence for the safe and reliable long-term percutaneous transfer of vital and therapeutic substances, signals, and necessary forces and moments from a prosthetic device to the body.


Subject(s)
Artificial Limbs , Bone and Bones/surgery , Dermatologic Surgical Procedures , Osseointegration , Amputation, Surgical , Amputees/rehabilitation , Animals , Biomechanical Phenomena , Bone and Bones/cytology , Disease Models, Animal , Male , Models, Theoretical , Porosity , Prosthesis Design , Rats , Rats, Wistar , Skin/cytology , Skin Physiological Phenomena
5.
J Rehabil Res Dev ; 43(4): 573-80, 2006.
Article in English | MEDLINE | ID: mdl-17123195

ABSTRACT

Direct skeletal attachment of limb prostheses is a viable alternative to traditional techniques that are based on a socket-residuum interface. Direct skeletal attachment may be a better or even the only method for patients with a very short residuum and high soft-tissue volume. The problem of integrating the prosthetic pylon with residual skin during direct skeletal attachment of a limb prosthesis has not been solved, and the use of a completely porous prosthetic pylon has not been the subject of focused, systematic research. In this in vivo study, we investigated cell (osteocyte, fibroblast, and keratinocyte) adhesion and penetration into the pores of a titanium pylon implanted in Wistar rats. The porous titanium pylon was implanted in the bone of the thigh residua of four rats. Electronic scanning and morphological analysis demonstrated integration of the pylon with the surrounding skin. These findings support the possibility of developing a natural barrier against the infection associated with direct skeletal attachment of limb prostheses.


Subject(s)
Artificial Limbs , Dermatologic Surgical Procedures , Osseointegration , Skin Physiological Phenomena , Animals , Male , Models, Animal , Pilot Projects , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...