Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38328062

ABSTRACT

Gene therapy-based HIV cure strategies typically aim to excise the HIV provirus directly, or target host dependency factors (HDFs) that support viral persistence. Cure approaches will likely require simultaneous co-targeting of multiple sites within the HIV genome to prevent evolution of resistance, and/or co-targeting of multiple HDFs to fully render host cells refractory to HIV infection. Bulk cell-based methods do not enable inference of co-editing within individual viral or target cell genomes, and do not discriminate between monoallelic and biallelic gene disruption. Here, we describe a targeted single-cell DNA sequencing (scDNA-seq) platform characterizing the near full-length HIV genome and 50 established HDF genes, designed to evaluate anti-HIV gene therapy strategies. We implemented the platform to investigate the capacity of multiplexed CRISPR-Cas9 ribonucleoprotein complexes (Cas9-RNPs) to simultaneously 1) inactivate the HIV provirus, and 2) knockout the CCR5 and CXCR4 HDF (entry co-receptor) genes in microglia and primary monocyte-derived macrophages (MDMs). Our scDNA-seq pipeline revealed that antiviral gene editing is rarely observed at multiple loci (or both alleles of a locus) within an individual cell, and editing probabilities across sites are linked. Our results demonstrate that single-cell sequencing is critical to evaluate the true efficacy and therapeutic potential of HIV gene therapy.

2.
Cell Rep ; 42(11): 113285, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37910505

ABSTRACT

Deciphering the mechanisms underlying viral persistence is critical to achieving a cure for human immunodeficiency virus (HIV) infection. Here, we implement a systems approach to discover molecular signatures of HIV latently infected CD4+ T cells, identifying the immunosuppressive, adenosine-producing ectonucleotidase CD73 as a key surface marker of latent cells. Hypoxic conditioning, reflecting the lymphoid tissue microenvironment, increases the frequency of CD73+ CD4+ T cells and promotes HIV latency. Transcriptomic profiles of CD73+ CD4+ T cells favor viral quiescence, immune evasion, and cell survival. CD73+ CD4+ T cells are capable of harboring a functional HIV reservoir and reinitiating productive infection ex vivo. CD73 or adenosine receptor blockade facilitates latent HIV reactivation in vitro, mechanistically linking adenosine signaling to viral quiescence. Finally, tissue imaging of lymph nodes from HIV-infected individuals on antiretroviral therapy reveals spatial association between CD73 expression and HIV persistence in vivo. Our findings warrant development of HIV-cure strategies targeting the hypoxia-CD73-adenosine axis.


Subject(s)
HIV Infections , HIV-1 , Humans , Adenosine/metabolism , CD4-Positive T-Lymphocytes , Virus Activation , Virus Latency/physiology , Virus Replication/physiology
3.
J Infect Dis ; 228(10): 1421-1429, 2023 11 11.
Article in English | MEDLINE | ID: mdl-37224627

ABSTRACT

BACKGROUND: On May 6, 2022, a powerful outbreak of monkeypox virus (MPXV) had been reported outside of Africa, with many continuing new cases being reported around the world. Analysis of mutations among the 2 different lineages present in the 2021 and 2022 outbreaks revealed the presence of G->A mutations occurring in the 5'GpA context, indicative of APOBEC3 cytidine deaminase activity. METHODS: By using a sensitive polymerase chain reaction (differential DNA denaturation PCR) method allowing differential amplification of AT-rich DNA, we analyzed the level of APOBEC3-induced MPXV editing in infected cells and in patients. RESULTS: We demonstrate that G->A hypermutated MPXV genomes can be recovered experimentally from APOBEC3 transfection followed by MPXV infection. Here, among the 7 human APOBEC3 cytidine deaminases (A3A-A3C, A3DE, A3F-A3H), only APOBEC3F was capable of extensively deaminating cytidine residues in MPXV genomes. Hyperedited genomes were also recovered in ∼42% of analyzed patients. Moreover, we demonstrate that substantial repair of these mutations occurs. Upon selection, corrected G->A mutations escaping drift loss contribute to the MPXV evolution observed in the current epidemic. CONCLUSIONS: Stochastic or transient overexpression of the APOBEC3F gene exposes the MPXV genome to a broad spectrum of mutations that may be modeling the mutational landscape after multiple cycles of viral replication.


Subject(s)
Cytidine Deaminase , Monkeypox virus , Humans , Monkeypox virus/genetics , Cytidine Deaminase/genetics , Mutation , Disease Outbreaks , Cytidine , Cytosine Deaminase/chemistry , Cytosine Deaminase/genetics
4.
PLoS Pathog ; 19(2): e1011156, 2023 02.
Article in English | MEDLINE | ID: mdl-36745676

ABSTRACT

Human adenoviruses (HAdVs) are a large family of DNA viruses counting more than a hundred strains divided into seven species (A to G). HAdVs induce respiratory tract infections, gastroenteritis and conjunctivitis. APOBEC3B is a cytidine deaminase that restricts several DNA viruses. APOBEC3B is also implicated in numerous cancers where it is responsible for the introduction of clustered mutations into the cellular genome. In this study, we demonstrate that APOBEC3B is an adenovirus restriction factor acting through a deaminase-dependent mechanism. APOBEC3B introduces C-to-T clustered mutations into the adenovirus genome. APOBEC3B reduces the propagation of adenoviruses by limiting viral genome replication, progression to late phase, and production of infectious virions. APOBEC3B restriction efficiency varies between adenoviral strains, the A12 strain being more sensitive to APOBEC3B than the B3 or C2 strains. In A12-infected cells, APOBEC3B clusters in the viral replication centers. Importantly, we show that adenovirus infection leads to a reduction of the quantity and/or enzymatic activity of the APOBEC3B protein depending on the strains. The A12 strain seems less able to resist APOBEC3B than the B3 or C2 strains, a characteristic which could explain the strong depletion of the APOBEC3-targeted motifs in the A12 genome. These findings suggest that adenoviruses evolved different mechanisms to antagonize APOBEC3B. Elucidating these mechanisms could benefit the design of cancer treatments. This study also identifies adenoviruses as triggers of the APOBEC3B-mediated innate response. The involvement of certain adenoviral strains in the genesis of the APOBEC3 mutational signature observed in tumors deserves further study.


Subject(s)
Adenoviridae Infections , Neoplasms , Humans , Adenoviridae/genetics , Adenoviridae/metabolism , Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism , Proteins/metabolism , Neoplasms/pathology , Minor Histocompatibility Antigens/genetics
5.
PLoS Pathog ; 19(2): e1011170, 2023 02.
Article in English | MEDLINE | ID: mdl-36802406

ABSTRACT

Viruses have evolved countless mechanisms to subvert and impair the host innate immune response. Measles virus (MeV), an enveloped, non-segmented, negative-strand RNA virus, alters the interferon response through different mechanisms, yet no viral protein has been described as directly targeting mitochondria. Among the crucial mitochondrial enzymes, 5'-aminolevulinate synthase (ALAS) is an enzyme that catalyzes the first step in heme biosynthesis, generating 5'-aminolevulinate from glycine and succinyl-CoA. In this work, we demonstrate that MeV impairs the mitochondrial network through the V protein, which antagonizes the mitochondrial enzyme ALAS1 and sequesters it to the cytosol. This re-localization of ALAS1 leads to a decrease in mitochondrial volume and impairment of its metabolic potential, a phenomenon not observed in MeV deficient for the V gene. This perturbation of the mitochondrial dynamics demonstrated both in culture and in infected IFNAR-/- hCD46 transgenic mice, causes the release of mitochondrial double-stranded DNA (mtDNA) in the cytosol. By performing subcellular fractionation post infection, we demonstrate that the most significant source of DNA in the cytosol is of mitochondrial origin. Released mtDNA is then recognized and transcribed by the DNA-dependent RNA polymerase III. The resulting double-stranded RNA intermediates will be captured by RIG-I, ultimately initiating type I interferon production. Deep sequencing analysis of cytosolic mtDNA editing divulged an APOBEC3A signature, primarily analyzed in the 5'TpCpG context. Finally, in a negative feedback loop, APOBEC3A an interferon inducible enzyme will orchestrate the catabolism of mitochondrial DNA, decrease cellular inflammation, and dampen the innate immune response.


Subject(s)
Interferons , Mitochondria , Mice , Animals , Mitochondria/metabolism , Measles virus , 5-Aminolevulinate Synthetase/genetics , 5-Aminolevulinate Synthetase/metabolism , DNA, Mitochondrial
6.
JCI Insight ; 6(3)2021 02 08.
Article in English | MEDLINE | ID: mdl-33351785

ABSTRACT

Although many HIV cure strategies seek to expand HIV-specific CD8+ T cells to control the virus, all are likely to fail if cellular exhaustion is not prevented. A loss in stem-like memory properties (i.e., the ability to proliferate and generate secondary effector cells) is a key feature of exhaustion; little is known, however, about how these properties are regulated in human virus-specific CD8+ T cells. We found that virus-specific CD8+ T cells from humans and nonhuman primates naturally controlling HIV/SIV infection express more of the transcription factor TCF-1 than noncontrollers. HIV-specific CD8+ T cell TCF-1 expression correlated with memory marker expression and expansion capacity and declined with antigenic stimulation. CRISPR-Cas9 editing of TCF-1 in human primary T cells demonstrated a direct role in regulating expansion capacity. Collectively, these data suggest that TCF-1 contributes to the regulation of the stem-like memory property of secondary expansion capacity of HIV-specific CD8+ T cells, and they provide a rationale for exploring the enhancement of this pathway in T cell-based therapeutic strategies for HIV.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , HIV Infections/immunology , HIV Infections/virology , HIV-1/immunology , T Cell Transcription Factor 1/immunology , Adult , Aged , Animals , Female , Gene Knockout Techniques , HIV Antigens/genetics , HIV Antigens/immunology , HIV-1/genetics , Humans , Immunologic Memory , Macaca mulatta , Male , Middle Aged , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/immunology , T Cell Transcription Factor 1/antagonists & inhibitors , T Cell Transcription Factor 1/genetics , Viral Load/immunology
7.
FASEB J ; 34(11): 14615-14630, 2020 11.
Article in English | MEDLINE | ID: mdl-32901981

ABSTRACT

A critical barrier to the development of a human immunodeficiency virus (HIV) cure is the lack of a scalable animal model that enables robust evaluation of eradication approaches prior to testing in humans. We established a humanized mouse model of latent HIV infection by transplanting "J-Lat" cells, Jurkat cells harboring a latent HIV provirus encoding an enhanced green fluorescent protein (GFP) reporter, into irradiated adult NOD.Cg-Prkdcscid Il2rgtm1Wjl /SzJ (NSG) mice. J-Lat cells exhibited successful engraftment in several tissues including spleen, bone barrow, peripheral blood, and lung, in line with the diverse natural tissue tropism of HIV. Administration of tumor necrosis factor (TNF)-α, an established HIV latency reversal agent, significantly induced GFP expression in engrafted cells across tissues, reflecting viral reactivation. These data suggest that our murine latency ("µ-Lat") model enables efficient determination of how effectively viral eradication agents, including latency reversal agents, penetrate, and function in diverse anatomical sites harboring HIV in vivo.


Subject(s)
Cell Transplantation/methods , Disease Models, Animal , HIV Infections/virology , HIV/physiology , Virus Latency , Animals , Bone Marrow/virology , Female , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HIV/genetics , HIV/pathogenicity , HIV Infections/pathology , HIV Infections/therapy , Humans , Jurkat Cells , Lung/virology , Male , Mice , Mice, Inbred NOD , Proviruses/genetics , Spleen/virology , Transfection/methods
8.
Nat Microbiol ; 5(9): 1144-1157, 2020 09.
Article in English | MEDLINE | ID: mdl-32541947

ABSTRACT

Quiescence is a hallmark of CD4+ T cells latently infected with human immunodeficiency virus 1 (HIV-1). While reversing this quiescence is an effective approach to reactivate latent HIV from T cells in culture, it can cause deleterious cytokine dysregulation in patients. As a key regulator of T-cell quiescence, FOXO1 promotes latency and suppresses productive HIV infection. We report that, in resting T cells, FOXO1 inhibition impaired autophagy and induced endoplasmic reticulum (ER) stress, thereby activating two associated transcription factors: activating transcription factor 4 (ATF4) and nuclear factor of activated T cells (NFAT). Both factors associate with HIV chromatin and are necessary for HIV reactivation. Indeed, inhibition of protein kinase R-like ER kinase, an ER stress sensor that can mediate the induction of ATF4, and calcineurin, a calcium-dependent regulator of NFAT, synergistically suppressed HIV reactivation induced by FOXO1 inhibition. Thus, our studies uncover a link of FOXO1, ER stress and HIV infection that could be therapeutically exploited to selectively reverse T-cell quiescence and reduce the size of the latent viral reservoir.


Subject(s)
Endoplasmic Reticulum Stress/drug effects , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O1/pharmacology , HIV-1/drug effects , Virus Activation/drug effects , Virus Latency/drug effects , Activating Transcription Factor 4/metabolism , CD4-Positive T-Lymphocytes/virology , Forkhead Box Protein O1/genetics , Gene Knockdown Techniques , HIV Infections/virology , Humans , K562 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...