Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
ACS Catal ; 14(2): 994-1004, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38269038

ABSTRACT

The neutral catalysts [IrCl(H)2(NHC)(substrate)2] or [IrCl(H)2(NHC)(substrate)(sulfoxide)] are used to transfer polarization from para hydrogen (pH2) to 3,5-dichloropyridine and 3,5-dibromopyridine substrates. This is achieved in a rapid, reversible, and low-cost process that relies on ligand exchange within the active catalyst. Notably, the sulfoxide-containing catalyst systems produced NMR signal enhancements between 1 and 2 orders of magnitude larger than its unmodified counterpart. Consequently, this signal amplification by reversible exchange hyperpolarization method can boost the 1H, 13C, and 15N nuclear magnetic resonance (NMR) signal intensities by factors up to 4350, 1550, and 46,600, respectively (14.0, 1.3, and 15.4% polarization). In this paper, NMR and X-ray crystallography are used to map the evolution of catalytically important species and provide mechanistic rational for catalytic efficiency. Furthermore, applications in spontaneous radiofrequency amplification by stimulated emission and NMR reaction monitoring are also shown.

2.
J Am Chem Soc ; 144(19): 8756-8769, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35508182

ABSTRACT

Here, we show how signal amplification by reversible exchange hyperpolarization of a range of 15N-containing synthons can be used to enable studies of their reactivity by 15N nuclear magnetic resonance (NO2- (28% polarization), ND3 (3%), PhCH2NH2 (5%), NaN3 (3%), and NO3- (0.1%)). A range of iridium-based spin-polarization transfer catalysts are used, which for NO2- work optimally as an amino-derived carbene-containing complex with a DMAP-d2 coligand. We harness long 15N spin-order lifetimes to probe in situ reactivity out to 3 × T1. In the case of NO2- (T1 17.7 s at 9.4 T), we monitor PhNH2 diazotization in acidic solution. The resulting diazonium salt (15N-T1 38 s) forms within 30 s, and its subsequent reaction with NaN3 leads to the detection of hyperpolarized PhN3 (T1 192 s) in a second step via the formation of an identified cyclic pentazole intermediate. The role of PhN3 and NaN3 in copper-free click chemistry is exemplified for hyperpolarized triazole (T1 < 10 s) formation when they react with a strained alkyne. We also demonstrate simple routes to hyperpolarized N2 in addition to showing how utilization of 15N-polarized PhCH2NH2 enables the probing of amidation, sulfonamidation, and imine formation. Hyperpolarized ND3 is used to probe imine and ND4+ (T1 33.6 s) formation. Furthermore, for NO2-, we also demonstrate how the 15N-magnetic resonance imaging monitoring of biphasic catalysis confirms the successful preparation of an aqueous bolus of hyperpolarized 15NO2- in seconds with 8% polarization. Hence, we create a versatile tool to probe organic transformations that has significant relevance for the synthesis of future hyperpolarized pharmaceuticals.


Subject(s)
Magnetic Resonance Imaging , Nitrogen Dioxide , Imines , Magnetic Resonance Spectroscopy/methods , Nitrogen
3.
Magn Reson Med ; 88(1): 11-27, 2022 07.
Article in English | MEDLINE | ID: mdl-35253267

ABSTRACT

PURPOSE: Enabling drug tracking (distribution/specific pathways) with magnetic resonance spectroscopy requires manipulation (via hyperpolarization) of spin state populations and targets with sufficiently long magnetic lifetimes to give the largest possible window of observation. Here, we demonstrate how the proton resonances of a group of thienopyridazines (with known anticancer properties), can be amplified using the para-hydrogen (p-H2 ) based signal amplification by reversible exchange (SABRE) hyperpolarization technique. METHODS: Thienopyridazine isomers, including a 2 H version, were synthesized in house. Iridium-based catalysts dissolved in a methanol-d4 solvent facilitated polarization transfer from p-H2 gas to the target thienopyridazines. Subsequent SABRE 1 H responses of hyperpolarized thienopyridazines were completed (400 MHz NMR). Pseudo-singlet state approaches were deployed to extend magnetic state lifetimes. Proof of principle spectral-spatial images were acquired across a range of field strengths (7T-9.4T MRI). RESULTS: 1 H-NMR signal enhancements of -10,130-fold at 9.4T (~33% polarization) were achieved on thieno[2,3-d]pyridazine (T[2,3-d]P), using SABRE under optimal mixing/field transfer conditions. 1 H T1 lifetimes for the thienopyridazines were ~18-50 s. Long-lived state approaches extended the magnetic lifetime of target proton sites in T[2,3-d]P from an average of 25-40 seconds. Enhanced in vitro imaging (spatial and chemical shift based) of target T[2,3-d]P was demonstrated. CONCLUSION: Here, we demonstrate the power of SABRE to deliver a fast and cost-effective route to hyperpolarization of important chemical motifs of anticancer agents. The SABRE approach outlined here lays the foundations for realizing continuous flow, hyperpolarized tracking of drug delivery/pathways.


Subject(s)
Antineoplastic Agents , Protons , Hydrogen/chemistry , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy/methods
4.
Chem Sci ; 12(16): 5910-5917, 2021 Mar 23.
Article in English | MEDLINE | ID: mdl-34168816

ABSTRACT

Signal Amplification by Reversible Exchange (SABRE) is a catalytic method for improving the detection of molecules by magnetic resonance spectroscopy. It achieves this by simultaneously binding the target substrate (sub) and para-hydrogen to a metal centre. To date, sterically large substrates are relatively inaccessible to SABRE due to their weak binding leading to catalyst destabilisation. We overcome this problem here through a simple co-ligand strategy that allows the hyperpolarisation of a range of weakly binding and sterically encumbered N-heterocycles. The resulting 1H NMR signal size is increased by up to 1400 times relative to their more usual Boltzmann controlled levels at 400 MHz. Hence, a significant reduction in scan time is achieved. The SABRE catalyst in these systems takes the form [IrX(H)2(NHC)(sulfoxide)(sub)] where X = Cl, Br or I. These complexes are shown to undergo very rapid ligand exchange and lower temperatures dramatically improve the efficiency of these SABRE catalysts.

5.
Nat Commun ; 12(1): 2952, 2021 05 19.
Article in English | MEDLINE | ID: mdl-34011925

ABSTRACT

The climate-carbon cycle feedback is one of the most important climate-amplifying feedbacks of the Earth system, and is quantified as a function of carbon-concentration feedback parameter (ß) and carbon-climate feedback parameter (γ). However, the global climate-amplifying effect from this feedback loop (determined by the gain factor, g) has not been quantified from observations. Here we apply a Fourier analysis-based carbon cycle feedback framework to the reconstructed records from 1850 to 2017 and 1000 to 1850 to estimate ß and γ. We show that the ß-feedback varies by less than 10% with an average of 3.22 ± 0.32 GtC ppm-1 for 1880-2017, whereas the γ-feedback increases from -33 ± 14 GtC K-1 on a decadal scale to -122 ± 60 GtC K-1 on a centennial scale for 1000-1850. Feedback analysis further reveals that the current amplification effect from the carbon cycle feedback is small (g is 0.01 ± 0.05), which is much lower than the estimates by the advanced Earth system models (g is 0.09 ± 0.04 for the historical period and is 0.15 ± 0.08 for the RCP8.5 scenario), implying that the future allowable CO2 emissions could be 9 ± 7% more. Therefore, our findings provide new insights about the strength of climate-carbon cycle feedback and about observational constraints on models for projecting future climate.

6.
Magn Reson Chem ; 59(12): 1187-1198, 2021 12.
Article in English | MEDLINE | ID: mdl-33729592

ABSTRACT

Utility of the pyridazine motif is growing in popularity as pharmaceutical and agrochemical agents. The detection and structural characterisation of such materials is therefore imperative for the successful development of new products. Signal amplification by reversible exchange (SABRE) offers a route to dramatically improve the sensitivity of magnetic resonance methods, and we apply it here to the rapid and cost-effective hyperpolarisation of substituted pyridazines. The 33 substrates investigated cover a range of steric and electronic properties and their capacity to perform highly effective SABRE is assessed. We find the method to be tolerant to a broad range of electron donating and withdrawing groups; however, good sensitivity is evident when steric bulk is added to the 3- and 6-positions of the pyridazine ring. We optimise the method by reference to a disubstituted ester that yields signal gains of >9000-fold at 9.4 T (>28% spin polarisation).

7.
Catal Sci Technol ; 10(5): 1343-1355, 2020 Mar 07.
Article in English | MEDLINE | ID: mdl-32647563

ABSTRACT

Hyperpolarisation techniques such as signal amplification by reversible exchange (SABRE) can deliver NMR signals several orders of magnitude larger than those derived under Boltzmann conditions. SABRE is able to catalytically transfer latent magnetisation from para-hydrogen to a substrate in reversible exchange via temporary associations with an iridium complex. SABRE has recently been applied to the hyperpolarisation of pyruvate, a substrate often used in many in vivo MRI studies. In this work, we seek to optimise the pyruvate-13C2 signal gains delivered through SABRE by fine tuning the properties of the active polarisation transfer catalyst. We present a detailed study of the effects of varying the carbene and sulfoxide ligands on the formation and behaviour of the active [Ir(H)2(η2-pyruvate)(sulfoxide)(NHC)] catalyst to produce a rationale for achieving high pyruvate signal gains in a cheap and refreshable manner. This optimisation approach allows us to achieve signal enhancements of 2140 and 2125-fold for the 1-13C and 2-13C sites respectively of sodium pyruvate-1,2-[13C2].

8.
Anal Chem ; 92(13): 9095-9103, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32510200

ABSTRACT

Signal amplification by reversible exchange (SABRE) is a hyperpolarization technique that uses a metal complex to catalytically transfer magnetization from parahydrogen to molecules of interest. SABRE is used here to monitor the decarboxylation of sodium pyruvate-1,2-[13C2] at a 15 mM concentration to form ethanoic acid and CO2 upon reaction with hydrogen peroxide (150 mM). The rate constant of this reaction is determined by hyperpolarized 13C SABRE-NMR spectroscopy as 0.056 ± 0.003 dm3 mol-1 s-1 at 298 K and is comparable to that determined from thermal 1H NMR (k = 0.050 ± 0.003 dm3 mol-1 s-1) and UV measurements (k = 0.053 ± 0.001 dm3 mol-1 s-1). The hyperpolarized reaction intermediate 2-hydroperoxy-2-hydroxypropanoate is detected in a single scan hyperpolarized 13C NMR spectrum. This work highlights how SABRE hyperpolarization can be used as a tool for the precise monitoring of chemical transformations by hyperpolarized NMR spectroscopy.

9.
PLoS One ; 15(1): e0228445, 2020.
Article in English | MEDLINE | ID: mdl-31978170

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0184480.].

10.
J Chem Phys ; 152(1): 014201, 2020 Jan 07.
Article in English | MEDLINE | ID: mdl-31914733

ABSTRACT

Signal Amplification by Reversible Exchange (SABRE) is an inexpensive and simple hyperpolarization technique that is capable of boosting nuclear magnetic resonance sensitivity by several orders of magnitude. It utilizes the reversible binding of para-hydrogen, as hydride ligands, and a substrate of interest to a metal catalyst to allow for polarization transfer from para-hydrogen into substrate nuclear spins. While the resulting nuclear spin populations can be dramatically larger than those normally created, their lifetime sets a strict upper limit on the experimental timeframe. Consequently, short nuclear spin lifetimes are a challenge for hyperpolarized metabolic imaging. In this report, we demonstrate how both hyperpolarization and long nuclear spin lifetime can be simultaneously achieved in nitrogen-15 containing derivatives of pyridazine and phthalazine by SABRE. These substrates were chosen to reflect two distinct classes of 15N2-coupled species that differ according to their chemical symmetry and thereby achieve different nuclear spin lifetimes. The pyridazine derivative proves to exhibit a signal lifetime of ∼2.5 min and can be produced with a signal enhancement of ∼2700. In contrast, while the phthalazine derivative yields a superior 15 000-fold 15N signal enhancement at 11.7 T, it has a much shorter signal lifetime.

11.
Angew Chem Int Ed Engl ; 59(7): 2710-2714, 2020 Feb 10.
Article in English | MEDLINE | ID: mdl-31833623

ABSTRACT

Silanols and silanes are key precursors and intermediates for the synthesis of silicon-based materials. While their characterization and quantification by 29 Si NMR spectroscopy has received significant attention, it is a technique that is limited by the low natural abundance of 29 Si and its low sensitivity. Here, we describe a method using p-H2 to hyperpolarize 29 Si. The observed signal enhancements, approaching 3000-fold at 11.7 T, would take many days of measurement for comparable results under Boltzmann conditions. The resulting signals were exploited to monitor the rapid reaction of tris(tert-butoxy)silanol with triflic anhydride in a T1 -corrected process that allows for rapid quantification. These results demonstrate a novel route to quantify dynamic processes and intermediates in the synthesis of silicon materials.

12.
Chem Sci ; 10(33): 7709-7717, 2019 Sep 07.
Article in English | MEDLINE | ID: mdl-31588319

ABSTRACT

The detection of alcohols by magnetic resonance techniques is important for their characterization and the monitoring of chemical change. Hyperpolarization processes can make previously inpractical measurements, such as the determination of low concentration intermediates, possible. Here, we investigate the SABRE-Relay method in order to define its key characteristics and improve the resulting 1H NMR signal gains which subsequently approach 103 per proton. We identify optimal amine proton transfer agents for SABRE-Relay and show how catalyst structure influences the outcome. The breadth of the method is revealed by expansion to more complex alcohols and the polarization of heteronuclei.

13.
J Adv Model Earth Syst ; 11(6): 1715-1734, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31598188

ABSTRACT

The terrestrial net biome production (NBP) is considered as one of the major drivers of interannual variation in atmospheric CO2 levels. However, the determinants of variability in NBP under the background climate (i.e., preindustrial conditions) remain poorly understood, especially on decadal-to-centennial timescales. We analyzed 1,000-year simulations spanning 850-1,849 from the Community Earth System Model (CESM) and found that the variability in NBP and heterotrophic respiration (RH) were largely driven by fluctuations in the net primary production (NPP) and carbon turnover rates in response to climate variability. On interannual to multidecadal timescales, variability in NBP was dominated by variation in NPP, while variability in RH was driven by variation in turnover rates. However, on centennial timescales (100-1,000 years), the RH variability became more tightly coupled to that of NPP. The NBP variability on centennial timescales was low, due to the near cancellation of NPP and NPP-driven RH changes arising from climate internal variability and external forcings: preindustrial greenhouse gases, volcanic eruptions, land use changes, orbital change, and solar activity. Factorial experiments showed that globally on centennial timescales, the forcing of changes in greenhouse gas concentrations were the largest contributor (51%) to variations in both NPP and RH, followed by volcanic eruptions impacting NPP (25%) and RH (31%). Our analysis of the carbon-cycle suggests that geoengineering solutions by injection of stratospheric aerosols might be ineffective on longer timescales.

14.
Eur J Pharm Sci ; 135: 32-37, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31077749

ABSTRACT

To prepare the way for using the isotopically labelled SABRE hyperpolarized 4,6-d2-nicotinamide as an MRI agent in humans we have performed an in-vivo study to measure its pharmacokinetics in the plasma of healthy rats after intravenous and oral administration. Male Han Wistar rats were dosed with either 4,6-d2-nicotinamide or the corresponding control, non-labelled nicotinamide, and plasma samples were obtained at eight time points for up to 24 h after administration. Pharmacokinetic parameters were determined from agent concentration-versus-time data for both 4,6-d2-nicotinamide and nicotinamide. 4,6-d2-Nicotinamide proved to be well tolerated regardless of route of administration at the concentrations used (20, 80 and 120 mg/kg). Pharmacokinetic parameters were similar after oral and intravenous administration and similar to those obtained for nicotinamide. Analysis of nicotinamide plasma concentrations after dosing 4,6-d2-nicotinamide intravenously demonstrates a reversible exchange of endogenous nicotinamide by this labelled agent over the time-course of our assays. Supported by a large body of evidence for the safety of nicotinamide when dosed orally in humans, we conclude that 4,6-d2-nicotinamide can also be safely administered intravenously, which will provide significant benefit when using this agent for planned imaging studies in humans.


Subject(s)
Niacinamide/pharmacokinetics , Administration, Intravenous , Administration, Oral , Animals , Chromatography, High Pressure Liquid/methods , Deuterium , Dose-Response Relationship, Drug , Infusions, Intravenous , Male , Niacinamide/administration & dosage , Niacinamide/blood , Rats , Tandem Mass Spectrometry/methods
15.
Chem Sci ; 10(45): 10607-10619, 2019 Dec 07.
Article in English | MEDLINE | ID: mdl-32110347

ABSTRACT

Monosaccharides, such as glucose and fructose, are important to life. In this work we highlight how the rapid delivery of improved 13C detectability for sugars by nuclear magnetic resonance (NMR) can be achieved using the para-hydrogen based NMR hyperpolarization method SABRE-Relay (Signal Amplification by Reversible Exchange-Relay). The significant 13C signal enhancements of 250 at a high field of 9.4 T, and 3100 at a low field of 1 T, enable the detection of trace amounts of these materials as well as the quantification of their tautomeric makeup. Using studies on 13C and 2H isotopically labelled agents we demonstrate how hyperpolarization lifetime (T 1) values can be extended, and how singlet states with long lifetimes can be created. The precise quantification of d-glucose-13C6-d 7 at the millimolar concentration level is shown to be possible within minutes in conjunction with a linear hyperpolarized response as a function of concentration. In addition to the measurements using labelled materials, low concentration detection is also illustrated for millimolar samples with natural abundance 13C where isomeric form quantification can be achieved with a single transient.

16.
Chemphyschem ; 20(2): 285-294, 2019 01 21.
Article in English | MEDLINE | ID: mdl-30395699

ABSTRACT

The hyperpolarization technique, Signal Amplification by Reversible Exchange (SABRE), has the potential to improve clinical diagnosis by making molecular magnetic resonance imaging in vivo a reality. Essential to this goal is the ability to produce a biocompatible bolus for administration. We seek here to determine how the identity of the catalyst and substrate affects the cytotoxicity by in vitro study, in addition to reporting how the use of biocompatible solvent mixtures influence the polarization transfer efficiency. By illustrating this across five catalysts and 8 substrates, we are able to identify routes to produce a bolus with minimal cytotoxic effects.


Subject(s)
Biocompatible Materials/chemistry , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Biocompatible Materials/metabolism , Catalysis , Cell Line, Tumor , Cell Survival/drug effects , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Deuterium/chemistry , Humans , Iridium/chemistry , Isoniazid/chemistry , Isoniazid/pharmacology , Methane/analogs & derivatives , Methane/chemistry , Pyrazinamide/chemistry , Pyrazinamide/pharmacology , Substrate Specificity
17.
Catal Sci Technol ; 8(19): 4925-4933, 2018 Oct 07.
Article in English | MEDLINE | ID: mdl-30319759

ABSTRACT

The catalytic signal amplification by reversible exchange process has become widely used for the hyperpolarisation of small molecules to improve their magnetic resonance detectability. It harnesses the latent polarisation of parahydrogen, and involves the formation of a labile metal complex that often contains an N-heterocyclic carbene (NHC) ligand (e.g. [Ir(H)2(NHC)(pyridine)3]Cl), which act as a polarisation transfer catalyst. Unfortunately, if the target molecule is too bulky, binding to the catalyst is poor and the hyperpolarisation yield is therefore low. We illustrate here the behaviour of a series of asymmetric NHC containing catalysts towards 3,4- and 3,5-lutidine in order to show how catalyst design can be used to dramatically improve the outcome of this catalytic process for sterically encumbered ligands.

18.
Phys Chem Chem Phys ; 20(41): 26362-26371, 2018 Nov 07.
Article in English | MEDLINE | ID: mdl-30303501

ABSTRACT

para-Hydrogen (p-H2) induced polarisation (PHIP) is an increasingly popular method for sensitivity enhancement in NMR spectroscopy. Its growing popularity is due in part to the introduction of the signal amplification by reversible exchange (SABRE) method that generates renewable hyperpolarisation in target analytes in seconds. A key benefit of PHIP and SABRE is that p-H2 can be relatively easily and cheaply produced, with costs increasing with the desired level of p-H2 purity. In this work, the efficiency of the SABRE polarisation transfer is explored by measuring the level of analyte hyperpolarisation as a function of the level of p-H2 enrichment. A linear relationship was found between p-H2 enrichment and analyte 1H hyperpolarisation for a range of molecules, polarisation transfer catalysts, NMR detection fields and for both the SABRE and SABRE-Relay transfer mechanisms over the range 29-99% p-H2 purity. The gradient of these linear relationships were related to a simple theoretical model to define an overall efficiency parameter, E, that quantifies the net fraction of the available p-H2 polarisation that is transferred to the target analyte. We find that the efficiency of SABRE is independent of the NMR detection field and exceeds E = 20% for methyl-4,6-d2-nicotinate when using a previously optimised catalyst system. For the SABRE-Relay transfer mechanism, efficiencies of up to E = 1% were found for 1H polarisation of 1-propanol, when ammonia was used as the polarisation carrier.

19.
Nat Commun ; 9(1): 4251, 2018 10 12.
Article in English | MEDLINE | ID: mdl-30315170

ABSTRACT

Iridium N-heterocyclic carbene (NHC) complexes catalyse the para-hydrogen-induced hyperpolarization process, Signal Amplification by Reversible Exchange (SABRE). This process transfers the latent magnetism of para-hydrogen into a substrate, without changing its chemical identity, to dramatically improve its nuclear magnetic resonance (NMR) detectability. By synthesizing and examining over 30 NHC containing complexes, here we rationalize the key characteristics of efficient SABRE catalysis prior to using appropriate catalyst-substrate combinations to quantify the substrate's NMR detectability. These optimizations deliver polarizations of 63% for 1H nuclei in methyl 4,6-d2-nicotinate, 25% for 13C nuclei in a 13C2-diphenylpyridazine and 43% for the 15N nucleus of pyridine-15N. These high detectability levels compare favourably with the 0.0005% 1H value harnessed by a routine 1.5 T clinical MRI system. As signal strength scales with the square of the number of observations, these low cost innovations offer remarkable improvements in detectability threshold that offer routes to significantly reduce measurement time.

20.
Chem Sci ; 9(15): 3677-3684, 2018 Apr 21.
Article in English | MEDLINE | ID: mdl-29780498

ABSTRACT

Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI) are two widely used techniques for the study of molecules and materials. Hyperpolarisation methods, such as Signal Amplification By Reversible Exchange (SABRE), turn typically weak magnetic resonance responses into strong signals. In this article we detail how it is possible to hyperpolarise the 1H, 13C and 15N nuclei of a range of amines. This involved showing how primary amines form stable but labile complexes of the type [Ir(H)2(IMes)(amine)3]Cl that allow parahydrogen to relay its latent polarisation into the amine. By optimising the temperature and parahydrogen pressure a 1000-fold per proton NH signal gain for deuterated benzylamine is achieved at 9.4 T. Additionally, we show that sterically hindered and electron poor amines that bind poorly to iridium can be hyperpolarised by either employing a co-ligand for complex stabilisation, or harnessing the fact that it is possible to exchange hyperpolarised protons between amines in a mixture, through the recently reported SABRE-RELAY method. These chemical refinements have significant potential to extend the classes of agent that can be hyperpolarised by readily accessible parahydrogen.

SELECTION OF CITATIONS
SEARCH DETAIL
...