Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
PLoS Genet ; 19(9): e1010932, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37721944

ABSTRACT

The eQTL Catalogue is an open database of uniformly processed human molecular quantitative trait loci (QTLs). We are continuously updating the resource to further increase its utility for interpreting genetic associations with complex traits. Over the past two years, we have increased the number of uniformly processed studies from 21 to 31 and added X chromosome QTLs for 19 compatible studies. We have also implemented Leafcutter to directly identify splice-junction usage QTLs in all RNA sequencing datasets. Finally, to improve the interpretability of transcript-level QTLs, we have developed static QTL coverage plots that visualise the association between the genotype and average RNA sequencing read coverage in the region for all 1.7 million fine mapped associations. To illustrate the utility of these updates to the eQTL Catalogue, we performed colocalisation analysis between vitamin D levels in the UK Biobank and all molecular QTLs in the eQTL Catalogue. Although most GWAS loci colocalised both with eQTLs and transcript-level QTLs, we found that visual inspection could sometimes be used to distinguish primary splicing QTLs from those that appear to be secondary consequences of large-effect gene expression QTLs. While these visually confirmed primary splicing QTLs explain just 6/53 of the colocalising signals, they are significantly less pleiotropic than eQTLs and identify a prioritised causal gene in 4/6 cases.


Subject(s)
Multifactorial Inheritance , Quantitative Trait Loci , Humans , Quantitative Trait Loci/genetics , Genotype , Base Sequence , Genome-Wide Association Study , Polymorphism, Single Nucleotide
2.
Bioinformatics ; 35(8): 1433-1435, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30239591

ABSTRACT

MOTIVATION: Genotype imputation is essential for genome-wide association studies (GWAS) to retrieve information of untyped variants and facilitate comparability across studies. However, there is a lack of automated pipelines that perform all required processing steps prior to and following imputation. RESULTS: Based on widely used and freely available tools, we have developed Gimpute, an automated processing and imputation pipeline for genome-wide association data. Gimpute includes processing steps for genotype liftOver, quality control, population outlier detection, haplotype pre-phasing, imputation, post imputation, data management and the extension to other existing pipeline. AVAILABILITY AND IMPLEMENTATION: The Gimpute package is an open source R package and is freely available at https://github.com/transbioZI/Gimpute. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Genome-Wide Association Study , Software , Genome , Genotype , Haplotypes
3.
PLoS Genet ; 8(5): e1002741, 2012 May.
Article in English | MEDLINE | ID: mdl-22693455

ABSTRACT

Common diseases such as type 2 diabetes are phenotypically heterogeneous. Obesity is a major risk factor for type 2 diabetes, but patients vary appreciably in body mass index. We hypothesized that the genetic predisposition to the disease may be different in lean (BMI<25 Kg/m²) compared to obese cases (BMI≥30 Kg/m²). We performed two case-control genome-wide studies using two accepted cut-offs for defining individuals as overweight or obese. We used 2,112 lean type 2 diabetes cases (BMI<25 kg/m²) or 4,123 obese cases (BMI≥30 kg/m²), and 54,412 un-stratified controls. Replication was performed in 2,881 lean cases or 8,702 obese cases, and 18,957 un-stratified controls. To assess the effects of known signals, we tested the individual and combined effects of SNPs representing 36 type 2 diabetes loci. After combining data from discovery and replication datasets, we identified two signals not previously reported in Europeans. A variant (rs8090011) in the LAMA1 gene was associated with type 2 diabetes in lean cases (P = 8.4×10⁻9, OR = 1.13 [95% CI 1.09-1.18]), and this association was stronger than that in obese cases (P = 0.04, OR = 1.03 [95% CI 1.00-1.06]). A variant in HMG20A--previously identified in South Asians but not Europeans--was associated with type 2 diabetes in obese cases (P = 1.3×10⁻8, OR = 1.11 [95% CI 1.07-1.15]), although this association was not significantly stronger than that in lean cases (P = 0.02, OR = 1.09 [95% CI 1.02-1.17]). For 36 known type 2 diabetes loci, 29 had a larger odds ratio in the lean compared to obese (binomial P = 0.0002). In the lean analysis, we observed a weighted per-risk allele OR = 1.13 [95% CI 1.10-1.17], P = 3.2×10⁻¹4. This was larger than the same model fitted in the obese analysis where the OR = 1.06 [95% CI 1.05-1.08], P = 2.2×10⁻¹6. This study provides evidence that stratification of type 2 diabetes cases by BMI may help identify additional risk variants and that lean cases may have a stronger genetic predisposition to type 2 diabetes.


Subject(s)
Body Mass Index , Diabetes Mellitus, Type 2/genetics , High Mobility Group Proteins/genetics , Laminin/genetics , Obesity/genetics , Aged , Alleles , Asian People/genetics , Case-Control Studies , Diabetes Mellitus, Type 2/complications , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Male , Middle Aged , Obesity/complications , Polymorphism, Single Nucleotide , Risk Factors , White People/genetics
4.
Nat Genet ; 37(12): 1320-2, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16258542

ABSTRACT

A substantial investment has been made in the generation of large public resources designed to enable the identification of tag SNP sets, but data establishing the adequacy of the sample sizes used are limited. Using large-scale empirical and simulated data sets, we found that the sample sizes used in the HapMap project are sufficient to capture common variation, but that performance declines substantially for variants with minor allele frequencies of <5%.


Subject(s)
Chromosome Mapping , Databases, Nucleic Acid , Diabetes Mellitus, Type 2/genetics , Genetic Predisposition to Disease , Genome, Human/genetics , Polymorphism, Single Nucleotide , Gene Frequency , Humans , Linkage Disequilibrium , Sample Size
SELECTION OF CITATIONS
SEARCH DETAIL
...