Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 15(7): e0236454, 2020.
Article in English | MEDLINE | ID: mdl-32702710

ABSTRACT

Flax (Linum usitatissimum) is a member of family linaceae with annual growth habit. It is included among those crops which were domesticated very early and has been used in development related studies as a model plant. In plants, Calmodulin-binding transcription activators (CAMTAs) comprise a unique set of Calmodulin-binding proteins. To elucidate the transport mechanism of secondary metabolites in flax, a genome-based study on these transporters was performed. The current investigation identified nine CAMTAs proteins, classified into three categories during phylogenetic analysis. Each group had significant evolutionary role as illustrated by the conservation of gene structures, protein domains and motif organizations over the distinctive phylogenetic classes. GO annotation suggested a link to sequence-specific DNA and protein binding, response to low temperature and transcription regulation by RNA polymerase II. The existence of different hormonal and stress responsive cis-regulatory elements in promotor region may directly correlate with the variation of their transcripts. MicroRNA target analysis revealed that various groups of miRNA families targeted the LuCAMTAs genes. Identification of CAMTA genes, miRNA studies and phylogenetic analysis may open avenues to uncover the underlying functional mechanism of this important family of genes in flax.


Subject(s)
Calmodulin-Binding Proteins/genetics , Evolution, Molecular , Flax/genetics , Multigene Family/genetics , Calmodulin-Binding Proteins/classification , Genome, Plant/genetics , Phylogeny , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL