Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 301
Filter
1.
bioRxiv ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38895443

ABSTRACT

Bacterial pathogens that are successful in hospital environments must survive times of intense antibiotic exposure and times of no antibiotic exposure. When these organisms are closely associated with human hosts, they must also transmit from one patient to another for the resistance to spread. The resulting evolutionary dynamics have, in some settings, led to rising levels of resistance in hospitals. Here, we focus on an important but understudied aspect of this dynamic: the loss of resistance when the resistant organisms evolve in environments where the antibiotic pressure is removed. Based on prior data, we hypothesize that resistance arising in the context of strong selection may carry a high cost and revert to sensitivity quickly once the selective pressure is removed. Conversely, resistant isolates that persist through times of no antibiotic pressure should carry a lower cost and revert less quickly. To test this hypothesis, we utilize a genetically diverse set of patient-derived, daptomycin-resistant Enterococcus faecium isolates that include cases of both de novo emergence of resistance within patients and putatively transmitted resistance. Both of these sets of strains have survived periods of antibiotic exposure, but only putatively transmitted resistant strains have survived extended periods without antibiotic exposure. These strains were then allowed to evolve in antibiotic free laboratory conditions. We find that putatively transmitted resistant strains tended to have lower level resistance but that evolution in antibiotic-free conditions resulted in minimal loss of resistance. In contrast, resistance that arose de novo within patients was higher level but exhibited greater declines in resistance in vitro. Sequencing of the experimentally evolved isolates revealed that reversal of high level resistance resulted from evolutionary pathways that were frequently genetically associated with the unique resistance mutations of that strain. Thus, the rapid reversal of high-level resistance was associated with accessible evolutionary pathways where an increase in fitness is associated with decreased resistance. We describe how this rapid loss of resistance may limit the spread of resistance within the hospital and shape the diversity of resistance phenotypes across patients.

2.
bioRxiv ; 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-37732198

ABSTRACT

Current strategies to understand the molecular basis of Marek's disease virus (MDV) virulence primarily consist of cataloguing divergent nucleotides between strains with different phenotypes. However, each MDV strain is typically represented by a single consensus genome despite the confirmed existence of mixed viral populations. To assess the reliability of single-consensus interstrain genomic comparisons, we obtained two additional consensus genomes of vaccine strain CVI988 (Rispens) and two additional consensus genomes of the very virulent strain Md5 by sequencing viral stocks and cultured field isolates. In conjunction with the published genomes of CVI988 and Md5, this allowed us to perform 3-way comparisons between consensus genomes of the same strain. We found that consensus genomes of CVI988 can vary in as many as 236 positions involving 13 open reading frames (ORFs). In contrast, we found that Md5 genomes varied only in 11 positions involving a single ORF. Phylogenomic analyses showed all three Md5 consensus genomes clustered closely together, while also showing that CVI988 GenBank.BAC diverged from CVI988 Pirbright.lab and CVI988 USDA.PA.field . Comparison of CVI988 consensus genomes revealed 19 SNPs in the unique regions of CVI988 GenBank.BAC that were not present in either CVI988 Pirbright.lab or CVI988 USDA.PA.field . Finally, we evaluated the genomic heterogeneity of CVI988 and Md5 populations by identifying positions with >2% read support for alternative alleles in two ultra-deeply sequenced samples. We were able to confirm that both populations of CVI988 and Md5 were mixed, exhibiting a total of 29 and 27 high-confidence minor variant positions, respectively. We did not find any evidence of minor variants in the positions corresponding to the 19 SNPs in the unique regions of CVI988 GenBank.BAC . Taken together, our findings confirm that consensus genomes of the same strain of MDV can vary and suggest that multiple consensus genomes per strain are needed in order to maximize the accuracy of interstrain genomic comparisons.

3.
Scand J Trauma Resusc Emerg Med ; 31(1): 89, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38044425

ABSTRACT

BACKGROUND: Extracorporeal cardiopulmonary resuscitation (ECPR) is an established rescue therapy for both out-of-hospital cardiac arrest (OHCA) and in-hospital cardiac arrest (IHCA). However, there remains significant heterogeneity in populations and outcomes across different studies. The primary aim of this study was to compare commonly used selection criteria and their effect on survival and utilisation in an Australian ECPR cohort. METHODS: We performed a retrospective, observational study of three established ECPR centres in Australia, including cases from 1 January 2013 to 31 December 2020 to establish the baseline cohort. We applied five commonly used ECPR selection criteria, ranging from restrictive to liberal. RESULTS: The baseline cohort included 199 ECPR cases: 95 OHCA and 104 IHCA patients. Survival to hospital discharge was 20% for OHCA and 41.4% for IHCA. For OHCA patients, strictly applying the most restrictive criteria would have resulted in the highest survival rate 7/16 (43.8%) compared to the most liberal criteria 16/73 (21.9%). However, only 16/95 (16.8%) in our cohort strictly met the most restrictive criteria versus 73/95 (76.8%) with the most liberal criteria. Similarly, in IHCA, the most restrictive criteria would have resulted in a higher survival rate in eligible patients 10/15 (66.7%) compared to 27/59 (45.8%) with the most liberal criteria. With all criteria a large portion of survivors in IHCA would not have been eligible for ECMO if strictly applying criteria, 33/43 (77%) with restrictive and 16/43 (37%) with the most liberal criteria. CONCLUSIONS: Adherence to different selection criteria impacts both the ECPR survival rate and the total number of survivors. Commonly used selection criteria may be unsuitable to select IHCA ECPR patients.


Subject(s)
Cardiopulmonary Resuscitation , Extracorporeal Membrane Oxygenation , Out-of-Hospital Cardiac Arrest , Humans , Australia/epidemiology , Cardiopulmonary Resuscitation/methods , Extracorporeal Membrane Oxygenation/methods , Out-of-Hospital Cardiac Arrest/therapy , Patient Selection , Retrospective Studies , Treatment Outcome
4.
PLoS Genet ; 19(12): e1011086, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38134220

ABSTRACT

Structural differences between genomes are a major source of genetic variation that contributes to phenotypic differences. Transposable elements, mobile genetic sequences capable of increasing their copy number and propagating themselves within genomes, can generate structural variation. However, their repetitive nature makes it difficult to characterize fine-scale differences in their presence at specific positions, limiting our understanding of their impact on genome variation. Domesticated maize is a particularly good system for exploring the impact of transposable element proliferation as over 70% of the genome is annotated as transposable elements. High-quality transposable element annotations were recently generated for de novo genome assemblies of 26 diverse inbred maize lines. We generated base-pair resolved pairwise alignments between the B73 maize reference genome and the remaining 25 inbred maize line assemblies. From this data, we classified transposable elements as either shared or polymorphic in a given pairwise comparison. Our analysis uncovered substantial structural variation between lines, representing both simple and complex connections between TEs and structural variants. Putative insertions in SNP depleted regions, which represent recently diverged identity by state blocks, suggest some TE families may still be active. However, our analysis reveals that within these recently diverged genomic regions, deletions of transposable elements likely account for more structural variation events and base pairs than insertions. These deletions are often large structural variants containing multiple transposable elements. Combined, our results highlight how transposable elements contribute to structural variation and demonstrate that deletion events are a major contributor to genomic differences.


Subject(s)
DNA Transposable Elements , Zea mays , Humans , DNA Transposable Elements/genetics , Zea mays/genetics , Genomics
5.
Viruses ; 15(12)2023 11 29.
Article in English | MEDLINE | ID: mdl-38140589

ABSTRACT

Australia has multiple lagoviruses with differing pathogenicity. The circulation of these viruses was traditionally determined through opportunistic sampling events. In the lead up to the nationwide release of RHDVa-K5 (GI.1aP-GI.1a) in 2017, an existing citizen science program, RabbitScan, was augmented to allow members of the public to submit samples collected from dead leporids for lagovirus testing. This study describes the information obtained from the increased number of leporid samples received between 2015 and 2022 and focuses on the recent epidemiological interactions and evolutionary trajectory of circulating lagoviruses in Australia between October 2020 and December 2022. A total of 2771 samples were tested from January 2015 to December 2022, of which 1643 were lagovirus-positive. Notable changes in the distribution of lagovirus variants were observed, predominantly in Western Australia, where RHDV2-4c (GI.4cP-GI.2) was detected again in 2021 after initially being reported to be present in 2018. Interestingly, we found evidence that the deliberately released RHDVa-K5 was able to establish and circulate in wild rabbit populations in WA. Overall, the incorporation of citizen science approaches proved to be a cost-efficient method to increase the sampling area and enable an in-depth analysis of lagovirus distribution, genetic diversity, and interactions. The maintenance of such programs is essential to enable continued investigations of the critical parameters affecting the biocontrol of feral rabbit populations in Australia, as well as to enable the detection of any potential future incursions.


Subject(s)
Caliciviridae Infections , Citizen Science , Hemorrhagic Disease Virus, Rabbit , Lagovirus , Animals , Rabbits , Hemorrhagic Disease Virus, Rabbit/genetics , Molecular Epidemiology , Lagovirus/genetics , Phylogeny , Australia/epidemiology
6.
Front Sci ; 12023.
Article in English | MEDLINE | ID: mdl-37869257

ABSTRACT

Evolutionary medicine - i.e. the application of insights from evolution and ecology to biomedicine - has tremendous untapped potential to spark transformational innovation in biomedical research, clinical care and public health. Fundamentally, a systematic mapping across the full diversity of life is required to identify animal model systems for disease vulnerability, resistance, and counter-resistance that could lead to novel clinical treatments. Evolutionary dynamics should guide novel therapeutic approaches that target the development of treatment resistance in cancers (e.g., via adaptive or extinction therapy) and antimicrobial resistance (e.g., via innovations in chemistry, antimicrobial usage, and phage therapy). With respect to public health, the insight that many modern human pathologies (e.g., obesity) result from mismatches between the ecologies in which we evolved and our modern environments has important implications for disease prevention. Life-history evolution can also shed important light on patterns of disease burden, for example in reproductive health. Experience during the COVID-19 (SARS-CoV-2) pandemic has underlined the critical role of evolutionary dynamics (e.g., with respect to virulence and transmissibility) in predicting and managing this and future pandemics, and in using evolutionary principles to understand and address aspects of human behavior that impede biomedical innovation and public health (e.g., unhealthy behaviors and vaccine hesitancy). In conclusion, greater interdisciplinary collaboration is vital to systematically leverage the insight-generating power of evolutionary medicine to better understand, prevent, and treat existing and emerging threats to human, animal, and planetary health.

7.
Science ; 382(6667): 159-160, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37824636

ABSTRACT

Some whale populations are exhibiting unexpected cycles of boom and bust.


Subject(s)
Climate Change , Whales , Animals , Ecology , Population Dynamics
8.
Genetics ; 225(3)2023 11 01.
Article in English | MEDLINE | ID: mdl-37815810

ABSTRACT

The highly active family of Mutator (Mu) DNA transposons has been widely used for forward and reverse genetics in maize. There are examples of Mu-suppressible alleles that result in conditional phenotypic effects based on the activity of Mu. Phenotypes from these Mu-suppressible mutations are observed in Mu-active genetic backgrounds, but absent when Mu activity is lost. For some Mu-suppressible alleles, phenotypic suppression likely results from an outward-reading promoter within Mu that is only active when the autonomous Mu element is silenced or lost. We isolated 35 Mu alleles from the UniformMu population that represent insertions in 24 different genes. Most of these mutant alleles are due to insertions within gene coding sequences, but several 5' UTR and intron insertions were included. RNA-seq and de novo transcript assembly were utilized to document the transcripts produced from 33 of these Mu insertion alleles. For 20 of the 33 alleles, there was evidence of transcripts initiating within the Mu sequence reading through the gene. This outward-reading promoter activity was detected in multiple types of Mu elements and does not depend on the orientation of Mu. Expression analyses of Mu-initiated transcripts revealed the Mu promoter often provides gene expression levels and patterns that are similar to the wild-type gene. These results suggest the Mu promoter may represent a minimal promoter that can respond to gene cis-regulatory elements. Findings from this study have implications for maize researchers using the UniformMu population, and more broadly highlight a strategy for transposons to co-exist with their host.


Subject(s)
Zea mays , Base Sequence , DNA Transposable Elements , Mutation , Zea mays/genetics
9.
Vaccines (Basel) ; 11(6)2023 May 31.
Article in English | MEDLINE | ID: mdl-37376432

ABSTRACT

Vaccines play an important role in maintaining human and animal health worldwide. There is continued demand for effective and safe adjuvants capable of enhancing antigen-specific responses to a target pathogen. Rabbit hemorrhagic disease virus (RHDV) is a highly contagious calicivirus that often induces high mortality rates in rabbits. Herein, we evaluated the activity of an experimental sulfated lactosyl archaeol (SLA) archaeosome adjuvant when incorporated in subunit vaccine formulations targeting RHDV. The subunit antigens consisted of RHDV-CRM197 peptide conjugates or recombinant RHDV2 VP60. SLA was able to enhance antigen-specific antibody titers and cellular responses in mice and rabbits. Three weeks following immunization, antigen-specific antibody levels in rabbits vaccinated with RHDV2 VP60 + SLA were significantly higher than those immunized with antigen alone, with geomean titers of 7393 vs. 117. In addition, the SLA-adjuvanted VP60-based formulations were highly efficacious in a rabbit RHDV2 challenge model with up to 87.5% animals surviving the viral challenge. These findings demonstrate the potential utility of SLA adjuvants in veterinary applications and highlight its activity in different types of mammalian species.

10.
Evol Med Public Health ; 11(1): 163-173, 2023.
Article in English | MEDLINE | ID: mdl-37325804

ABSTRACT

Background and objectives: The processes by which pathogens evolve within a host dictate the efficacy of treatment strategies designed to slow antibiotic resistance evolution and influence population-wide resistance levels. The aim of this study is to describe the underlying genetic and phenotypic changes leading to antibiotic resistance within a patient who died as resistance evolved to available antibiotics. We assess whether robust patterns of collateral sensitivity and response to combinations existed that might have been leveraged to improve therapy. Methodology: We used whole-genome sequencing of nine isolates taken from this patient over 279 days of a chronic infection with Enterobacter hormaechei, and systematically measured changes in resistance against five of the most relevant drugs considered for treatment. Results: The entirety of the genetic change is consistent with de novo mutations and plasmid loss events, without acquisition of foreign genetic material via horizontal gene transfer. The nine isolates fall into three genetically distinct lineages, with early evolutionary trajectories being supplanted by previously unobserved multi-step evolutionary trajectories. Importantly, although the population evolved resistance to all the antibiotics used to treat the infection, no single isolate was resistant to all antibiotics. Evidence of collateral sensitivity and response to combinations therapy revealed inconsistent patterns across this diversifying population. Conclusions: Translating antibiotic resistance management strategies from theoretical and laboratory data to clinical situations, such as this, will require managing diverse population with unpredictable resistance trajectories.

11.
Evol Med Public Health ; 11(1): 185-186, 2023.
Article in English | MEDLINE | ID: mdl-37360836
12.
Cancers (Basel) ; 15(5)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36900192

ABSTRACT

BACKGROUND: Luminal gastrointestinal (GI) tract cancers, including esophageal, gastric, small bowel, colorectal, and anal cancers, are often diagnosed at late stages. These tumors can cause gradual GI bleeding, which may be unrecognized but detectable by subtle laboratory changes. Our aim was to develop models to predict luminal GI tract cancers using laboratory studies and patient characteristics using logistic regression and random forest machine learning methods. METHODS: The study was a single-center, retrospective cohort at an academic medical center, with enrollment between 2004-2013 and with follow-up until 2018, who had at least two complete blood counts (CBCs). The primary outcome was the diagnosis of GI tract cancer. Prediction models were developed using multivariable single timepoint logistic regression, longitudinal logistic regression, and random forest machine learning. RESULTS: The cohort included 148,158 individuals, with 1025 GI tract cancers. For 3-year prediction of GI tract cancers, the longitudinal random forest model performed the best, with an area under the receiver operator curve (AuROC) of 0.750 (95% CI 0.729-0.771) and Brier score of 0.116, compared to the longitudinal logistic regression model, with an AuROC of 0.735 (95% CI 0.713-0.757) and Brier score of 0.205. CONCLUSIONS: Prediction models incorporating longitudinal features of the CBC outperformed the single timepoint logistic regression models at 3-years, with a trend toward improved accuracy of prediction using a random forest machine learning model compared to a longitudinal logistic regression model.

13.
Glob Chang Biol ; 29(8): 2108-2121, 2023 04.
Article in English | MEDLINE | ID: mdl-36644792

ABSTRACT

The krill surplus hypothesis of unlimited prey resources available for Antarctic predators due to commercial whaling in the 20th century has remained largely untested since the 1970s. Rapid warming of the Western Antarctic Peninsula (WAP) over the past 50 years has resulted in decreased seasonal ice cover and a reduction of krill. The latter is being exacerbated by a commercial krill fishery in the region. Despite this, humpback whale populations have increased but may be at a threshold for growth based on these human-induced changes. Understanding how climate-mediated variation in prey availability influences humpback whale population dynamics is critical for focused management and conservation actions. Using an 8-year dataset (2013-2020), we show that inter-annual humpback whale pregnancy rates, as determined from skin-blubber biopsy samples (n = 616), are positively correlated with krill availability and fluctuations in ice cover in the previous year. Pregnancy rates showed significant inter-annual variability, between 29% and 86%. Our results indicate that krill availability is in fact limiting and affecting reproductive rates, in contrast to the krill surplus hypothesis. This suggests that this population of humpback whales may be at a threshold for population growth due to prey limitations. As a result, continued warming and increased fishing along the WAP, which continue to reduce krill stocks, will likely impact this humpback whale population and other krill predators in the region. Humpback whales are sentinel species of ecosystem health, and changes in pregnancy rates can provide quantifiable signals of the impact of environmental change at the population level. Our findings must be considered paramount in developing new and more restrictive conservation and management plans for the Antarctic marine ecosystem and minimizing the negative impacts of human activities in the region.


Subject(s)
Euphausiacea , Humpback Whale , Animals , Humans , Antarctic Regions , Climate , Ecosystem , Population Dynamics , Ice Cover
16.
J Virol ; 96(20): e0088622, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36197107

ABSTRACT

To characterize the ongoing evolution of myxoma virus in Australian rabbits, we used experimental infections of laboratory rabbits to determine the virulence and disease phenotypes of recent virus isolates. The viruses, collected between 2012 and 2015, fell into three lineages, one of which, lineage c, experienced a punctuated increase in evolutionary rate. All viruses were capable of causing acute death with aspects of neutropenic septicemia, characterized by minimal signs of myxomatosis, the occurrence of pulmonary edema and bacteria invasions throughout internal organs, but with no inflammatory response. For the viruses of highest virulence all rabbits usually died at this point. In more attenuated viruses, some rabbits died acutely, while others developed an amyxomatous phenotype. Rabbits that survived for longer periods developed greatly swollen cutaneous tissues with very high virus titers. This was particularly true of lineage c viruses. Unexpectedly, we identified a line of laboratory rabbits with some innate resistance to myxomatosis and used these in direct comparisons with the fully susceptible rabbit line. Importantly, the same disease phenotype occurred in both susceptible and resistant rabbits, although virulence was shifted toward more attenuated grades in resistant animals. We propose that selection against inflammation at cutaneous sites prolongs virus replication and enhances transmission, leading to the amyxomatous phenotype. In some virus backgrounds this creates an immunosuppressive state that predisposes to high virulence and acute death. The alterations in disease pathogenesis, particularly the overwhelming bacterial invasions that characterize the modern viruses, suggest that their virulence grades are not directly comparable with earlier studies. IMPORTANCE The evolution of the myxoma virus (MYXV) following its release as a biological control for European rabbits in Australia is the textbook example of the coevolution of virus virulence and host resistance. However, most of our knowledge of MYXV evolution only covers the first few decades of its spread in Australia and often with little direct connection between how changes in virus phenotype relate to those in the underlying virus genotype. By conducting detailed experimental infections of recent isolates of MYXV in different lines of laboratory rabbits, we examined the ongoing evolution of MYXV disease phenotypes. Our results reveal a wide range of phenotypes, including an amyxomatous type, as well as the impact of invasive bacteria, that in part depended on the level of rabbit host resistance. These results provide a unique insight into the complex virus and host factors that combine to shape disease phenotype and viral evolution.


Subject(s)
Myxoma virus , Myxomatosis, Infectious , Animals , Rabbits , Virulence/genetics , Australia , Phenotype , Genotype , Myxomatosis, Infectious/genetics
17.
ACS Appl Mater Interfaces ; 14(38): 42864-42875, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36103577

ABSTRACT

Daptomycin (DAP), a cyclic anionic lipopeptide antibiotic, is among the last resorts to treat multidrug-resistant Gram-positive bacterial infections, caused by vancomycin-resistant Enterococcus faecium or methicillin-resistant Staphylococcus aureus. DAP is administered intravenously, and via biliary excretion, ∼5-10% of the intravenous DAP dose arrives in the gastrointestinal (GI) tract where it drives resistance evolution in the off-target populations of E. faecium bacteria. Previously, we have shown in vivo that the oral administration of cholestyramine, an ion exchange biomaterial (IXB) sorbent, prevents DAP treatment from enriching DAP resistance in the populations of E. faecium shed from mice. Here, we investigate the biomaterial-DAP interfacial interactions to uncover the antibiotic removal mechanisms. The IXB-mediated DAP capture from aqueous media was measured in controlled pH/electrolyte solutions and in the simulated intestinal fluid (SIF) to uncover the molecular and colloidal mechanisms of DAP removal from the GI tract. Our findings show that the IXB electrostatically adsorbs the anionic antibiotic via a time-dependent diffusion-controlled process. Unsteady-state diffusion-adsorption mass balance describes the dynamics of adsorption well, and the maximum removal capacity is beyond the electric charge stoichiometric ratio because of DAP self-assembly. This study may open new opportunities for optimizing cholestyramine adjuvant therapy to prevent DAP resistance, as well as designing novel biomaterials to remove off-target antibiotics from the GI tract.


Subject(s)
Daptomycin , Methicillin-Resistant Staphylococcus aureus , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins , Biocompatible Materials/pharmacology , Cholestyramine Resin , Daptomycin/pharmacology , Daptomycin/therapeutic use , Drug Resistance, Bacterial , Electrolytes , Ion Exchange , Mice , Microbial Sensitivity Tests , Vancomycin
18.
PLoS Biol ; 20(9): e3001804, 2022 09.
Article in English | MEDLINE | ID: mdl-36149891

ABSTRACT

Following the initiation of the unprecedented global vaccination campaign against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), attention has now turned to the potential impact of this large-scale intervention on the evolution of the virus. In this Essay, we summarize what is currently known about pathogen evolution in the context of immune priming (including vaccination) from research on other pathogen species, with an eye towards the future evolution of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/prevention & control , Humans , Immunization Programs , Vaccination
19.
Evol Med Public Health ; 10(1): 439-446, 2022.
Article in English | MEDLINE | ID: mdl-36118914

ABSTRACT

Background and objectives: Previously, we showed proof-of-concept in a mouse model that oral administration of cholestyramine prevented enrichment of daptomycin-resistant Enterococcus faecium in the gastrointestinal (GI) tract during daptomycin therapy. Cholestyramine binds daptomycin in the gut, which removes daptomycin selection pressure and so prevents the enrichment of resistant clones. Here, we investigated two open questions related to this approach: (i) can cholestyramine prevent the enrichment of diverse daptomycin mutations emerging de novo in the gut? and (ii) how does the timing of cholestyramine administration impact its ability to suppress resistance? Methodology: Mice with GI E. faecium were treated with daptomycin with or without cholestyramine, and E. faecium was cultured from feces to measure changes in daptomycin susceptibility. A subset of clones was sequenced to investigate the genomic basis of daptomycin resistance. Results: Cholestyramine prevented the enrichment of diverse resistance mutations that emerged de novo in daptomycin-treated mice. Whole-genome sequencing revealed that resistance emerged through multiple genetic pathways, with most candidate resistance mutations observed in the clsA gene. In addition, we observed that cholestyramine was most effective when administration started prior to the first dose of daptomycin. However, beginning cholestyramine after the first daptomycin dose reduced the frequency of resistant E. faecium compared to not using cholestyramine at all. Conclusions and implications: Cholestyramine prevented the enrichment of diverse daptomycin-resistance mutations in intestinal E. faecium populations during daptomycin treatment, and it is a promising tool for managing the transmission of daptomycin-resistant E. faecium.

SELECTION OF CITATIONS
SEARCH DETAIL
...