Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
1.
PLoS One ; 19(2): e0297666, 2024.
Article in English | MEDLINE | ID: mdl-38377053

ABSTRACT

Male contraceptive options and infertility treatments are limited, and almost all innovation has been limited to updates to medically assisted reproduction protocols and methods. To accelerate the development of drugs that can either improve or inhibit fertility, we established a small molecule library as a toolbox for assay development and screening campaigns using human spermatozoa. We have profiled all compounds in the Sperm Toolbox in several automated high-throughput assays that measure stimulation or inhibition of sperm motility or the acrosome reaction. We have assayed motility under non-capacitating and capacitating conditions to distinguish between pathways operating under these different physiological states. We also assayed cell viability to ensure any effects on sperm function are specific. A key advantage of our studies is that all compounds are assayed together in the same experimental conditions, which allows quantitative comparisons of their effects in complementary functional assays. We have combined the resulting datasets to generate fingerprints of the Sperm Toolbox compounds on sperm function. The data are included in an on-line R-based app for convenient querying.


Subject(s)
Semen , Sperm Motility , Humans , Male , Spermatozoa/metabolism , Acrosome Reaction , Fertility
2.
Proc Natl Acad Sci U S A ; 121(7): e2315069121, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38315851

ABSTRACT

A key step in drug discovery, common to many disease areas, is preclinical demonstration of efficacy in a mouse model of disease. However, this demonstration and its translation to the clinic can be impeded by mouse-specific pathways of drug metabolism. Here, we show that a mouse line extensively humanized for the cytochrome P450 gene superfamily ("8HUM") can circumvent these problems. The pharmacokinetics, metabolite profiles, and magnitude of drug-drug interactions of a test set of approved medicines were in much closer alignment with clinical observations than in wild-type mice. Infection with Mycobacterium tuberculosis, Leishmania donovani, and Trypanosoma cruzi was well tolerated in 8HUM, permitting efficacy assessment. During such assessments, mouse-specific metabolic liabilities were bypassed while the impact of clinically relevant active metabolites and DDI on efficacy were well captured. Removal of species differences in metabolism by replacement of wild-type mice with 8HUM therefore reduces compound attrition while improving clinical translation, accelerating drug discovery.


Subject(s)
Communicable Diseases , Drug Discovery , Mice , Animals , Drug Interactions , Disease Models, Animal , Cytochrome P-450 Enzyme System/metabolism , Acceleration
3.
Sci Transl Med ; 15(726): eadg8105, 2023 12 13.
Article in English | MEDLINE | ID: mdl-38091410

ABSTRACT

Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, affects millions of people in the Americas and across the world, leading to considerable morbidity and mortality. Current treatment options, benznidazole (BNZ) and nifurtimox, offer limited efficacy and often lead to adverse side effects because of long treatment durations. Better treatment options are therefore urgently required. Here, we describe a pyrrolopyrimidine series, identified through phenotypic screening, that offers an opportunity to improve on current treatments. In vitro cell-based washout assays demonstrate that compounds in the series are incapable of killing all parasites; however, combining these pyrrolopyrimidines with a subefficacious dose of BNZ can clear all parasites in vitro after 5 days. These findings were replicated in a clinically predictive in vivo model of chronic Chagas disease, where 5 days of treatment with the combination was sufficient to prevent parasite relapse. Comprehensive mechanism of action studies, supported by ligand-structure modeling, show that compounds from this pyrrolopyrimidine series inhibit the Qi active site of T. cruzi cytochrome b, part of the cytochrome bc1 complex of the electron transport chain. Knowledge of the molecular target enabled a cascade of assays to be assembled to evaluate selectivity over the human cytochrome b homolog. As a result, a highly selective and efficacious lead compound was identified. The combination of our lead compound with BNZ rapidly clears T. cruzi parasites, both in vitro and in vivo, and shows great potential to overcome key issues associated with currently available treatments.


Subject(s)
Chagas Disease , Parasites , Trypanocidal Agents , Trypanosoma cruzi , Animals , Humans , Cytochromes b , Trypanocidal Agents/adverse effects , Chagas Disease/drug therapy , Chagas Disease/chemically induced , Chagas Disease/parasitology
4.
Drug Test Anal ; 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38062938

ABSTRACT

The emergence of new synthetic cannabinoid receptor agonists (SCRAs) onto the illicit drugs market continues to cause harm, and the overall availability of physicochemical and pharmacokinetic data for new psychoactive substances is lacking. The lipophilicity of 23 SCRAs and the plasma protein binding (PPB) of 11 SCRAs was determined. Lipophilicity was determined using a validated chromatographic hydrophobicity index (CHI) log D method; tested SCRAs showed moderate to high lipophilicity, with experimental log D7.4 ranging from 2.48 (AB-FUBINACA) to 4.95 (4F-ABUTINACA). These results were also compared to in silico predictions generated using seven commercially available software packages and online tools (Canvas; ChemDraw; Gastroplus; MoKa; PreADMET; SwissADME; and XlogP). Licenced, dedicated software packages provided more accurate lipophilicity predictions than those which were free or had prediction as a secondary function; however, the latter still provided competitive estimates in most cases. PPB of tested SCRAs, as determined by equilibrium dialysis, was in the upper range of the lipophilicity scale, ranging from 90.8% (ADB-BUTINACA) to 99.9% (BZO-HEXOXIZID). The high PPB of these drugs may contribute to reduced rate of clearance and extended durations of pharmacological effects compared to lesser-bound SCRAs. The presented data improve understanding of the behaviour of these drugs in the body. Ultimately, similar data and predictions may be used in the prediction of the structure and properties of drugs yet to emerge on the illicit market.

5.
J Med Chem ; 66(22): 15380-15408, 2023 11 23.
Article in English | MEDLINE | ID: mdl-37948640

ABSTRACT

There is an urgent need for new tuberculosis (TB) treatments, with novel modes of action, to reduce the incidence/mortality of TB and to combat resistance to current treatments. Through both chemical and genetic methodologies, polyketide synthase 13 (Pks13) has been validated as essential for mycobacterial survival and as an attractive target for Mycobacterium tuberculosis growth inhibitors. A benzofuran series of inhibitors that targeted the Pks13 thioesterase domain, failed to progress to preclinical development due to concerns over cardiotoxicity. Herein, we report the identification of a novel oxadiazole series of Pks13 inhibitors, derived from a high-throughput screening hit and structure-guided optimization. This new series binds in the Pks13 thioesterase domain, with a distinct binding mode compared to the benzofuran series. Through iterative rounds of design, assisted by structural information, lead compounds were identified with improved antitubercular potencies (MIC < 1 µM) and in vitro ADMET profiles.


Subject(s)
Benzofurans , Mycobacterium tuberculosis , Polyketide Synthases , Antitubercular Agents/chemistry , Mycobacterium tuberculosis/metabolism , Benzofurans/chemistry , Microbial Sensitivity Tests
6.
ACS Med Chem Lett ; 14(11): 1602, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37970589

ABSTRACT

[This corrects the article DOI: 10.1021/acsmedchemlett.3c00215.].

7.
ACS Med Chem Lett ; 14(8): 1014-1016, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37583828

ABSTRACT

Working in drug discovery is difficult for many institutions due to the need for resources, funding, and in-country expertise. The Wellcome Centre for Anti-Infective Research (WCAIR) is responding to the unmet training needs for individuals/institutions working in drug discovery in low-middle income countries. Through their training program, individuals can undertake a practical placement, either online or at the center, with access to a dedicated trainer from their field of research. Practical placements are tailored to the needs of the individual/institute to enable capability building on return to their home institute. In addition to training placements, the center is focused on building partnerships by supporting institutes to work in drug discovery. Here we highlight WCAIR's training program and the partnerships that have developed from this.

9.
J Med Chem ; 66(15): 10413-10431, 2023 08 10.
Article in English | MEDLINE | ID: mdl-37506194

ABSTRACT

There is an urgent need for new treatments for Chagas disease, a parasitic infection which mostly impacts South and Central America. We previously reported on the discovery of GSK3494245/DDD01305143, a preclinical candidate for visceral leishmaniasis which acted through inhibition of the Leishmania proteasome. A related analogue, active against Trypanosoma cruzi, showed suboptimal efficacy in an animal model of Chagas disease, so alternative proteasome inhibitors were investigated. Screening a library of phenotypically active analogues against the T. cruzi proteasome identified an active, selective pyridazinone, the development of which is described herein. We obtained a cryo-EM co-structure of proteasome and a key inhibitor and used this to drive optimization of the compounds. Alongside this, optimization of the absorption, distribution, metabolism, and excretion (ADME) properties afforded a suitable compound for mouse efficacy studies. The outcome of these studies is discussed, alongside future plans to further understand the series and its potential to deliver a new treatment for Chagas disease.


Subject(s)
Chagas Disease , Leishmaniasis, Visceral , Trypanocidal Agents , Trypanosoma cruzi , Mice , Animals , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/therapeutic use , Proteasome Endopeptidase Complex , Chagas Disease/drug therapy , Chagas Disease/parasitology , Leishmaniasis, Visceral/drug therapy , Trypanocidal Agents/pharmacology , Trypanocidal Agents/therapeutic use , Trypanocidal Agents/chemistry
10.
J Med Chem ; 66(13): 8896-8916, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37343180

ABSTRACT

While treatment options for human African trypanosomiasis (HAT) have improved significantly, there is still a need for new drugs with eradication now a realistic possibility. Here, we report the development of 2,4-diaminothiazoles that demonstrate significant potency against Trypanosoma brucei, the causative agent of HAT. Using phenotypic screening to guide structure-activity relationships, potent drug-like inhibitors were developed. Proof of concept was established in an animal model of the hemolymphatic stage of HAT. To treat the meningoencephalitic stage of infection, compounds were optimized for pharmacokinetic properties, including blood-brain barrier penetration. However, in vivo efficacy was not achieved, in part due to compounds evolving from a cytocidal to a cytostatic mechanism of action. Subsequent studies identified a nonessential kinase involved in the inositol biosynthesis pathway as the molecular target of these cytostatic compounds. These studies highlight the need for cytocidal drugs for the treatment of HAT and the importance of static-cidal screening of analogues.


Subject(s)
Cytostatic Agents , Trypanocidal Agents , Trypanosoma brucei brucei , Trypanosomiasis, African , Animals , Humans , Trypanosomiasis, African/drug therapy , Trypanocidal Agents/therapeutic use , Trypanocidal Agents/pharmacokinetics , Cytostatic Agents/therapeutic use , Blood-Brain Barrier
11.
ACS Infect Dis ; 9(5): 1046-1055, 2023 05 12.
Article in English | MEDLINE | ID: mdl-37083395

ABSTRACT

In September 2022, the Drug Discovery Unit at the University of Dundee, UK, organised an international meeting at the Wellcome Collection in London to explore the current clinical situation and challenges associated with treating schistosomiasis. The aim of this meeting was to discuss the need for new treatments in view of the clinical situation and to ascertain what the key requirements would be for any potential new anti-schistosomals. This information will be essential to inform ongoing drug discovery efforts for schistosomiasis. We also discussed the potential drug discovery pathway and associated criteria for progressing compounds to the clinic. To date, praziquantel (PZQ) is the only drug available to treat all species causing schistosomiasis, but it is often unable to completely clear parasites from an infected patient, partially due to its inactivity against juvenile worms. PZQ-mediated mass drug administration campaigns conducted in endemic areas (e.g., sub-Saharan Africa, where schistosomiasis is primarily prevalent) have contributed to reducing the burden of disease but will not eliminate the disease as a public health problem. The potential for Schistosoma to develop resistance towards PZQ, as the sole treatment available, could become a concern. Consequently, new anthelmintic medications are urgently needed, and this Perspective aims to capture some of the learnings from our discussions on the key criteria for new treatments.


Subject(s)
Anthelmintics , Schistosomiasis , Animals , London , Schistosomiasis/drug therapy , Praziquantel/pharmacology , Praziquantel/therapeutic use , Anthelmintics/pharmacology , Anthelmintics/therapeutic use , Schistosoma
12.
Nat Rev Microbiol ; 21(1): 35-50, 2023 01.
Article in English | MEDLINE | ID: mdl-35995950

ABSTRACT

Leishmaniasis (visceral and cutaneous), Chagas disease and human African trypanosomiasis cause substantial death and morbidity, particularly in low- and middle-income countries. Although the situation has improved for human African trypanosomiasis, there remains an urgent need for new medicines to treat leishmaniasis and Chagas disease; the clinical development pipeline is particularly sparse for Chagas disease. In this Review, we describe recent advances in our understanding of the biology of the causative pathogens, particularly from the drug discovery perspective, and we explore the progress that has been made in the development of new drug candidates and the identification of promising molecular targets. We also explore the challenges in developing new clinical candidates and discuss potential solutions to overcome such hurdles.


Subject(s)
Chagas Disease , Leishmaniasis , Trypanosomiasis, African , Animals , Humans , Trypanosomiasis, African/drug therapy , Chagas Disease/drug therapy , Leishmaniasis/drug therapy , Drug Discovery
13.
RSC Med Chem ; 13(12): 1587-1604, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36561069

ABSTRACT

The synthesis and evaluation of twenty six new phenylurea substituted 2,4-diamino-pyrimidines against Plasmodium falciparum (Pf) 3D7 are reported. Compounds were prepared to improve both anti-malarial activity and selectivity of the series previously reported by our group. Additional properties have been determined to assess their potential as anti-malarial leads including; HepG2 cytotoxicity, solubility, permeability, and lipophilicity, as well as in vitro stability in human and rat microsomes. We also assess their inhibition profile against a diverse set of 10 human kinases. Molecular docking, cheminformatics and bioinformatics analyses were also undertaken. Compounds 40 demonstrated the best anti-malarial activity at Pf 3D7 (0.09 µM), good selectivity with respect to mammalian cytotoxicity (SI = 54) and low microsomal clearance. Quantitative structure activity relationship (QSAR) analyses point to lipophilicity being a key driver of improved anti-malarial activity. The most active compounds in the series suffered from high lipophilicity, poor aqueous solubility and low permeability. The results provide useful information to guide further chemistry iterations.

14.
Nat Commun ; 13(1): 5992, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36220877

ABSTRACT

Tuberculosis is a major global cause of both mortality and financial burden mainly in low and middle-income countries. Given the significant and ongoing rise of drug-resistant strains of Mycobacterium tuberculosis within the clinical setting, there is an urgent need for the development of new, safe and effective treatments. Here the development of a drug-like series based on a fused dihydropyrrolidino-pyrimidine scaffold is described. The series has been developed against M. tuberculosis lysyl-tRNA synthetase (LysRS) and cellular studies support this mechanism of action. DDD02049209, the lead compound, is efficacious in mouse models of acute and chronic tuberculosis and has suitable physicochemical, pharmacokinetic properties and an in vitro safety profile that supports further development. Importantly, preliminary analysis using clinical resistant strains shows no pre-existing clinical resistance towards this scaffold.


Subject(s)
Lysine-tRNA Ligase , Mycobacterium tuberculosis , Tuberculosis , Animals , Lysine-tRNA Ligase/chemistry , Lysine-tRNA Ligase/genetics , Lysine-tRNA Ligase/pharmacology , Mice , Mycobacterium tuberculosis/genetics , Tuberculosis/drug therapy
16.
Eur J Med Chem ; 243: 114709, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36087385

ABSTRACT

There is a need for non-hormonal contraceptives. One area that needs further investigation is the development of male contraceptives. Comparatively little is understood about potential drug targets in men to achieve a reversible contraceptive effect. In this article, we review the need for male contraceptives and some thoughts around the characteristics of a male contraceptive and the potential development pathway. We then discuss different potential approaches to discovering male contraceptives and then highlight potential targets that have been discussed in the literature.


Subject(s)
Contraceptive Agents, Male , Male , Humans , Contraceptive Agents, Male/pharmacology , Chemistry, Pharmaceutical , Contraceptive Agents/pharmacology
17.
Microorganisms ; 10(7)2022 Jun 25.
Article in English | MEDLINE | ID: mdl-35889006

ABSTRACT

Chagas disease caused by the protozoan Trypanosoma cruzi is endemic to 21 countries in the Americas, effects approximately 6 million people and on average results in 12,000 deaths annually. Human African Trypanosomiasis (HAT) is caused by the Trypanosoma brucei sub-species, endemic to 36 countries within sub-Saharan Africa. Treatment regimens for these parasitic diseases are complicated and not effective against all disease stages; thus, there is a need to find improved treatments. To identify new molecules for the drug discovery pipelines for these diseases, we have utilised in vitro assays to identify compounds with selective activity against both T. cruzi and T.b. brucei from the Medicines for Malaria Venture (MMV) Pathogen Box compound collection. To prioritise these molecules for further investigation, temporal and wash off assays were utilised to identify the speed of action and cidality of compounds. For translational relevance, compounds were tested against clinically relevant T.b. brucei subspecies. Compounds with activity against T. cruzi cytochrome P450 (TcCYP51) have not previously been successful in clinical trials for chronic Chagas disease; thus, to deprioritise compounds with this activity, they were tested against recombinant TcCYP51. Compounds with biological profiles warranting progression offer important tools for drug and target development against kinetoplastids.

18.
Eur J Med Chem ; 238: 114421, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35594652

ABSTRACT

Approximately 6-7 million people around the world are estimated to be infected with Trypanosoma cruzi, the causative agent of Chagas disease. The current treatments are inadequate and therefore new medical interventions are urgently needed. In this paper we describe the identification of a series of disubstituted piperazines which shows good potency against the target parasite but is hampered by poor metabolic stability. We outline the strategies used to mitigate this issue such as lowering logD, bioisosteric replacements of the metabolically labile piperazine ring and use of plate-based arrays for quick diversity scoping. We discuss the success of these strategies within the context of this series and highlight the challenges faced in phenotypic programs when attempting to improve the pharmacokinetic profile of compounds whilst maintaining potency against the desired target.


Subject(s)
Chagas Disease , Trypanosoma cruzi , Chagas Disease/drug therapy , Chagas Disease/parasitology , Humans , Piperazines/pharmacology
19.
J Med Chem ; 65(7): 5606-5624, 2022 04 14.
Article in English | MEDLINE | ID: mdl-35303411

ABSTRACT

African animal trypanosomiasis or nagana, caused principally by infection of the protozoan parasites Trypanosoma congolense and Trypanosoma vivax, is a major problem in cattle and other livestocks in sub-Saharan Africa. Current treatments are threatened by the emergence of drug resistance and there is an urgent need for new, effective drugs. Here, we report the repositioning of a compound series initially developed for the treatment of human African trypanosomiasis. A medicinal chemistry program, focused on deriving more soluble analogues, led to development of a lead compound capable of curing cattle infected with both T. congolense and T. vivax via intravenous dosing. Further optimization has the potential to yield a single-dose intramuscular treatment for this disease. Comprehensive mode of action studies revealed that the molecular target of this promising compound and related analogues is the cyclin-dependent kinase CRK12.


Subject(s)
Trypanosoma congolense , Trypanosomiasis, African , Animals , Cattle , Cyclin-Dependent Kinases , Drug Repositioning , Trypanosoma vivax , Trypanosomiasis, African/drug therapy , Trypanosomiasis, African/parasitology , Trypanosomiasis, African/veterinary
20.
Hum Reprod ; 37(3): 466-475, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35048946

ABSTRACT

STUDY QUESTION: Can a high-throughput screening (HTS) platform facilitate male fertility drug discovery? SUMMARY ANSWER: An HTS platform identified a large number of compounds that enhanced sperm motility. WHAT IS KNOWN ALREADY: Several efforts to find small molecules modulating sperm function have been performed but none have used high-throughput technology. STUDY DESIGN, SIZE, DURATION: Healthy donor semen samples were used and samples were pooled (3-5 donors per pool). Primary screening was performed singly; dose-response screening was performed in duplicate (using independent donor pools). PARTICIPANTS/MATERIALS, SETTING, METHODS: Spermatozoa isolated from healthy donors were prepared by density gradient centrifugation and incubated in 384-well plates with compounds (6.25 µM) to identify those compounds with enhancing effects on motility. Approximately 17 000 compounds from the libraries, ReFRAME, Prestwick, Tocris, LOPAC, CLOUD and MMV Pathogen Box, were screened. Dose-response experiments of screening hits were performed to confirm the enhancing effect on sperm motility. Experiments were performed in a university setting. MAIN RESULTS AND THE ROLE OF CHANCE: From our primary single concentration screening, 105 compounds elicited an enhancing effect on sperm motility compared to dimethylsulphoxide-treated wells. Confirmed enhancing compounds were grouped based on their annotated targets/target classes. A major target class, phosphodiesterase inhibitors, were identified, in particular PDE10A inhibitors as well as number of compounds not previously known to enhance human sperm motility, such as those related to GABA signalling. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: Although this approach provides data about the activity of the compound, it is only a starting point. For example, further substantive experiments are necessary to provide a more comprehensive picture of each compound's activity, the effect on the kinetics of the cell populations and subpopulations, and their potential mechanisms of action. Compounds have been tested with prepared donor spermatozoa, incubated under non-capacitating conditions, and only incubated with compounds for a relatively short period of time. Therefore, the effect of compounds under different conditions, for example in whole semen, for longer incubation times, or using samples from patient groups, may be different and require further study. All experiments were performed in vitro. WIDER IMPLICATIONS OF THE FINDINGS: This phenotypic screening assay identified a large number of compounds that increased sperm motility. In addition to furthering our understanding of human sperm function, for example identifying new avenues for discovery, we highlight potential compounds as promising start-point for a medicinal chemistry programme for potential enhancement of male fertility. Moreover, with disclosure of the results of screening, we present a substantial resource to inform further work in the field. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by the Bill and Melinda Gates Foundation, Scottish Funding Council and Scottish Universities Life Science Alliance. C.L.R.B. is Editor for RBMO. C.L.R.B. receives funding from Chief Scientists Office (Scotland), ESHRE and Genus PLC, consulting fees from Exscientia and lecture fees from Cooper Surgical and Ferring. S.M.d.S. is an Associate Editor of Human Reproduction, and an Associate Editor of Reproduction and Fertility. S.M.d.S. receives funding from Cooper Surgical and British Dietetic Society. No other authors declared a COI.


Subject(s)
Infertility, Male , Sperm Motility , Fertility , High-Throughput Screening Assays , Humans , Infertility, Male/drug therapy , Male , Phosphoric Diester Hydrolases/pharmacology , Phosphoric Diester Hydrolases/therapeutic use , Spermatozoa
SELECTION OF CITATIONS
SEARCH DETAIL
...