Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Infect Dis ; 69(3): 480-486, 2019 07 18.
Article in English | MEDLINE | ID: mdl-30388194

ABSTRACT

BACKGROUND: Tafenoquine was recently approved for chemoprophylaxis of malaria. Its specific activity against liver and blood stages of Plasmodium species has been separately characterized in animals but not in humans. METHODS: In this randomized, double-blind, placebo-controlled study, 16 malaria-naive, glucose-6-phosphate dehydrogenase-normal participants aged 20-42 years received tafenoquine chemoprophylaxis prior to challenge with blood stage Plasmodium falciparum. Participants were randomly assigned to either tafenoquine (n = 12) or placebo (n = 4) and took blinded study medication (single 200-mg dose) on days 1, 2, 3, and 10, followed by intravenous inoculation with approximately 2800 P. falciparum parasitized erythrocytes on day 13. The primary endpoint was the number of participants requiring rescue treatment with artemether/lumefantrine due to the onset of parasitemia as determined by quantitative polymerase chain reaction. RESULTS: None of the 12 participants who received tafenoquine developed parasitemia, whereas all placebo participants developed parasitemia (P = .0005). Two cases of mild hemoglobin decrease and a single case of mild hyperbilirubinemia occurred in the tafenoquine group. CONCLUSIONS: Tafenoquine chemoprophylaxis is safe and effective in preventing malaria in healthy nonimmune participants challenged with blood stage P. falciparum. CLINICAL TRIALS REGISTRATION: Australian and New Zealand Clinical Trials Registry (ANZCTR): ACTRN12617000102370.


Subject(s)
Aminoquinolines/administration & dosage , Antimalarials/administration & dosage , Malaria, Falciparum/prevention & control , Adult , Chemoprevention/methods , Double-Blind Method , Female , Healthy Volunteers , Humans , Male , Parasitemia/prevention & control , Placebos , Plasmodium falciparum/drug effects , Schizonts/drug effects , Young Adult
2.
Malar J ; 15(1): 588, 2016 Dec 07.
Article in English | MEDLINE | ID: mdl-27923405

ABSTRACT

BACKGROUND: Due to the ability of the 8-aminoquinolines (8AQs) to kill different stages of the malaria parasite, primaquine (PQ) and tafenoquine (TQ) are vital for causal prophylaxis and the eradication of erythrocytic Plasmodium sp. parasites. Recognizing the potential role of cytochrome (CYP) 450 2D6 in the metabolism and subsequent hepatic efficacy of 8-aminoquinolines, studies were designed to explore whether CYP2D-mediated metabolism was related to the ability of single-dose PQ and TQ to eliminate the asexual and sexual erythrocytic stages of Plasmodium berghei. METHODS: An IV P. berghei sporozoite murine challenge model was utilized to directly compare causal prophylactic and erythrocytic activity (asexual and sexual parasite stages) dose-response relationships in C57BL/6 wild-type (WT) mice and subsequently compare the erythrocytic activity of PQ and TQ in WT and CYP2D knock-out (KO) mice. RESULTS: Single-dose administration of either 25 mg/kg TQ or 40 mg/kg PQ eradicated the erythrocytic stages (asexual and sexual) of P. berghei in C57BL WT and CYP2D KO mice. In WT animals, the apparent elimination of hepatic infections occurs at lower doses of PQ than are required to eliminate erythrocytic infections. In contrast, the minimally effective dose of TQ needed to achieve causal prophylaxis and to eradicate erythrocytic parasites was analogous. CONCLUSION: The genetic deletion of the CYP2D cluster does not affect the ability of PQ or TQ to eradicate the blood stages (asexual and sexual) of P. berghei after single-dose administration.


Subject(s)
Aminoquinolines/pharmacology , Antimalarials/pharmacology , Cytochrome P-450 CYP2D6/metabolism , Malaria/drug therapy , Plasmodium berghei/drug effects , Primaquine/pharmacology , Aminoquinolines/administration & dosage , Animals , Antimalarials/administration & dosage , Chemoprevention/methods , Cytochrome P-450 CYP2D6/deficiency , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Therapy/methods , Female , Male , Mice, Inbred C57BL , Mice, Knockout , Primaquine/administration & dosage , Treatment Outcome
3.
Antimicrob Agents Chemother ; 59(7): 3864-9, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25870069

ABSTRACT

Cytochrome P450 (CYP) 2D metabolism is required for the liver-stage antimalarial efficacy of the 8-aminoquinoline molecule tafenoquine in mice. This could be problematic for Plasmodium vivax radical cure, as the human CYP 2D ortholog (2D6) is highly polymorphic. Diminished CYP 2D6 enzyme activity, as in the poor-metabolizer phenotype, could compromise radical curative efficacy in humans. Despite the importance of CYP 2D metabolism for tafenoquine liver-stage efficacy, the exact role that CYP 2D metabolism plays in the metabolism and pharmacokinetics of tafenoquine and other 8-aminoquinoline molecules has not been extensively studied. In this study, a series of tafenoquine pharmacokinetic experiments were conducted in mice with different CYP 2D metabolism statuses, including wild-type (WT) (reflecting extensive metabolizers for CYP 2D6 substrates) and CYPmouse 2D knockout (KO) (reflecting poor metabolizers for CYP 2D6 substrates) mice. Plasma and liver pharmacokinetic profiles from a single 20-mg/kg of body weight dose of tafenoquine differed between the strains; however, the differences were less striking than previous results obtained for primaquine in the same model. Additionally, the presence of a 5,6-ortho-quinone tafenoquine metabolite was examined in both mouse strains. The 5,6-ortho-quinone species of tafenoquine was observed, and concentrations of the metabolite were highest in the WT extensive-metabolizer phenotype. Altogether, this study indicates that CYP 2D metabolism in mice affects tafenoquine pharmacokinetics and could have implications for human tafenoquine pharmacokinetics in polymorphic CYP 2D6 human populations.


Subject(s)
Aminoquinolines/pharmacokinetics , Antimalarials/pharmacokinetics , Cytochrome P-450 CYP2D6/genetics , Aminoquinolines/blood , Animals , Antimalarials/blood , Area Under Curve , Biotransformation , Cytochrome P-450 CYP2D6/metabolism , Half-Life , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Primaquine/pharmacokinetics
4.
Antimicrob Agents Chemother ; 59(4): 2380-7, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25645856

ABSTRACT

Primaquine (PQ) metabolism by the cytochrome P450 (CYP) 2D family of enzymes is required for antimalarial activity in both humans (2D6) and mice (2D). Human CYP 2D6 is highly polymorphic, and decreased CYP 2D6 enzyme activity has been linked to decreased PQ antimalarial activity. Despite the importance of CYP 2D metabolism in PQ efficacy, the exact role that these enzymes play in PQ metabolism and pharmacokinetics has not been extensively studied in vivo. In this study, a series of PQ pharmacokinetic experiments were conducted in mice with differential CYP 2D metabolism characteristics, including wild-type (WT), CYP 2D knockout (KO), and humanized CYP 2D6 (KO/knock-in [KO/KI]) mice. Plasma and liver pharmacokinetic profiles from a single PQ dose (20 mg/kg of body weight) differed significantly among the strains for PQ and carboxy-PQ. Additionally, due to the suspected role of phenolic metabolites in PQ efficacy, these were probed using reference standards. Levels of phenolic metabolites were highest in mice capable of metabolizing CYP 2D6 substrates (WT and KO/KI 2D6 mice). PQ phenolic metabolites were present in different quantities in the two strains, illustrating species-specific differences in PQ metabolism between the human and mouse enzymes. Taking the data together, this report furthers understanding of PQ pharmacokinetics in the context of differential CYP 2D metabolism and has important implications for PQ administration in humans with different levels of CYP 2D6 enzyme activity.


Subject(s)
Antimalarials/pharmacokinetics , Cytochrome P-450 CYP2D6/metabolism , Primaquine/pharmacokinetics , Animals , Area Under Curve , Biotransformation , Cytochrome P-450 CYP2D6/genetics , Half-Life , Humans , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
5.
Infect Immun ; 82(12): 5308-16, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25287923

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC) is a significant cause of diarrheal disease and death, especially in children in developing countries. ETEC causes disease by colonizing the small intestine and producing heat-labile toxin (LT), heat-stable toxin (ST), or both LT and ST (LT+ST). The majority of ETEC strains produce both ST and LT. Despite the prevalence of LT+ST-producing organisms, few studies have examined the physiologic or immunologic consequences of simultaneous exposure to these two potent enterotoxins. In the current report, we demonstrate that when LT and ST are both present, they increase water movement into the intestinal lumen over and above the levels observed with either toxin alone. As expected, cultured intestinal epithelial cells increased their expression of intracellular cyclic GMP (cGMP) when treated with ST and their expression of intracellular cyclic AMP (cAMP) when treated with LT. When both toxins were present, cGMP levels but not cAMP levels were synergistically elevated compared with the levels of expression caused by the corresponding single-toxin treatment. Our data also demonstrate that the levels of inflammatory cytokines produced by intestinal epithelial cells in response to LT are significantly reduced in animals exposed to both enterotoxins. These findings suggest that there may be complex differences between the epithelial cell intoxication and, potentially, secretory outcomes induced by ETEC strains expressing LT+ST compared with strains that express LT or ST only. Our results also reveal a novel mechanism wherein ST production may reduce the hosts' ability to mount an effective innate or adaptive immune response to infecting organisms.


Subject(s)
Bacterial Toxins/toxicity , Cytokines/metabolism , Enterotoxigenic Escherichia coli/physiology , Enterotoxins/toxicity , Epithelial Cells/drug effects , Escherichia coli Proteins/toxicity , Nucleotides, Cyclic/metabolism , Water/metabolism , Animals , Cell Line , Enterotoxigenic Escherichia coli/immunology , Epithelial Cells/metabolism , Female , Humans , Mice , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL
...