Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Curr Environ Health Rep ; 11(2): 118-127, 2024 06.
Article in English | MEDLINE | ID: mdl-38526771

ABSTRACT

PURPOSE OF REVIEW: The discovery of per- and polyfluoroalkyl substances (PFAS) in the environment and humans worldwide has ignited scientific research, government inquiry, and public concern over numerous adverse health effects associated with PFAS exposure. In this review, we discuss the use of PFAS immunotoxicity data in regulatory and clinical decision-making contexts and question whether recent efforts adequately account for PFAS immunotoxicity in public health decision-making. RECENT FINDINGS: Government and academic reviews confirm the strongest human evidence for PFAS immunotoxicity is reduced antibody production in response to vaccinations, particularly for tetanus and diphtheria. However, recent events, such as the economic analysis supporting the proposed national primary drinking water regulations and clinical monitoring recommendations, indicate a failure to adequately incorporate these data into regulatory and clinical decisions. To be more protective of public health, we recommend using all relevant immunotoxicity data to inform current and future PFAS-related chemical risk assessment and regulation. Biological measures of immune system effects, such as reduced antibody levels in response to vaccination, should be used as valid and informative markers of health outcomes and risks associated with PFAS exposure. Routine toxicity testing should be expanded to include immunotoxicity evaluations in adult and developing organisms. In addition, clinical recommendations for PFAS-exposed individuals and communities should be revisited and strengthened to provide guidance on incorporating immune system monitoring and other actions that can be taken to protect against adverse health outcomes.


Subject(s)
Environmental Exposure , Fluorocarbons , Public Health , Humans , Risk Assessment , Fluorocarbons/toxicity , Environmental Exposure/adverse effects , Environmental Pollutants/toxicity , Immune System/drug effects , Animals
2.
Sci Total Environ ; 876: 162978, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37059129

ABSTRACT

In this community-led pilot study we sought to investigate the utility of expanded per- and polyfluoroalkyl substances (PFAS) testing for drinking water, using a targeted analysis for 70 PFAS and the Total Oxidizable Precursor (TOP) Assay which can indicate the presence of precursor PFAS. PFAS were detected in 30 out of 44 drinking water samples across 16 states; 15 samples would exceed US EPA's proposed maximum contaminant levels for six PFAS. Twenty-six unique PFAS were identified, including 12 not covered by either US EPA Methods 537.1 or 533. An ultrashort chain PFAS, PFPrA, had the highest frequency of detection, occurring in 24 of 30 samples. It was also the PFAS reported at the highest concentration in 15 of these samples. We created a data filter to model how these samples would be reported under the upcoming fifth Unregulated Contaminant Monitoring Rule (UCMR5) requirements. All of the 30 samples with PFAS quantified by the 70 PFAS test had one or more PFAS present that would not be captured if the UCMR5 reporting requirements were followed. Our analysis suggests the upcoming UCMR5 will likely underreport PFAS in drinking water, due to limited coverage and higher minimum reporting limits. Results were inconclusive on the utility of the TOP Assay for monitoring drinking water. The results from this study provide important information to community participants regarding their current PFAS drinking water exposure. In addition, these results suggest gaps that need to be addressed by regulatory and scientific communities, in particular, the need for expanded targeted analysis of PFAS, the development of a sensitive, broad spectrum PFAS test, and further investigation into ultrashort chain PFAS.


Subject(s)
Alkanesulfonic Acids , Drinking Water , Fluorocarbons , Water Pollutants, Chemical , Humans , Drinking Water/analysis , Pilot Projects , Water Pollutants, Chemical/analysis , Fluorocarbons/analysis , Isoantigens , Alkanesulfonic Acids/analysis
3.
Environ Sci Technol ; 57(4): 1568-1575, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36656107

ABSTRACT

Chemicals have improved the functionality and convenience of industrial and consumer products, but sometimes at the expense of human or ecological health. Existing regulatory systems have proven to be inadequate for assessing and managing the tens of thousands of chemicals in commerce. A different approach is urgently needed to minimize ongoing production, use, and exposures to hazardous chemicals. The premise of the essential-use approach is that chemicals of concern should be used only in cases in which their function in specific products is necessary for health, safety, or the functioning of society and when feasible alternatives are unavailable. To optimize the essential-use approach for broader implementation in the United States and Canada, we recommend that governments and businesses (1) identify chemicals of concern for essentiality assessments based on a broad range of hazard traits, going beyond toxicity; (2) expedite decision-making by avoiding unnecessary assessments and strategically asking up to three questions to determine whether the use of the chemical in the product is essential; (3) apply the essential-use approach as early as possible in the process of developing and assessing chemicals; and (4) engage diverse experts in identifying chemical uses and functions, assessing alternatives, and making essentiality determinations and share such information broadly. If optimized and expanded into regulatory systems in the United States and Canada, other policymaking bodies, and businesses, the essential-use approach can improve chemicals management and shift the market toward safer chemistries that benefit human and ecological health.


Subject(s)
Hazardous Substances , United States , Humans , Risk Assessment , Canada
4.
Environ Int ; 167: 107408, 2022 09.
Article in English | MEDLINE | ID: mdl-35908389

ABSTRACT

BACKGROUND: PFAS (per-and polyfluoroalkyl substances) are a large class of synthetic chemicals widely used in consumer products and industrial processes. The scientific literature on PFAS has increased dramatically in the last decade. Many stakeholders, including regulators, scientists, non-governmental organizations, and concerned individuals could benefit from an efficient way to access the health and toxicological literature related to PFAS. OBJECTIVE: To create a systematic evidence map of the available peer-reviewed health or toxicological research for 29 PFAS. METHODS: A protocol for conducting this systematic evidence map was initially published on Zenodo (Pelch et al. 2019c), then peer reviewed and published in Environment International (Pelch et al. 2019d). PubMed database was searched through January 25, 2021. Studies were screened for inclusion and exclusion according to the Populations, Exposures, Comparators, and Outcomes (PECO) statement. Inclusion criteria were intentionally broad and included any human, animal, and/or in vitro study that investigated exposure to one of the 29 PFAS of interest and a human health or toxicological effect. Selected study details were extracted from included studies as described in the protocol. Study appraisal was not conducted. The included studies and extracted meta-data are freely available in the online, interactive systematic evidence map at https://pfastoxdatabase.org. RESULTS: Over 15,000 studies were retrieved from the PubMed literature searches. After manual screening, 1,067 studies were identified and included as investigating the health or toxicological effect of one or more PFAS of interest. There were 505 human, 385 animal, and 220 in vitro studies. Summary tables of the extracted data and overall observations are included in this report. CONCLUSIONS: The PFAS-Tox Database is a useful tool for searching, filtering, and identifying peer reviewed research on the health and toxicological effects of the included PFAS. In this summary of the evidence map we provide examples of data gaps and clusters revealed by the database, with the goal of helping direct future research efforts, facilitate systematic reviews (e.g. on immune effects, mixtures of PFAS, or effects of short chain PFAS), inform regulatory risk assessments, and improve opportunities for cross-disciplinary coordination. We also discuss how this tool supports scientists, regulatory agencies, and other individuals by increasing awareness and access to current evidence regarding the health effects associated with PFAS exposure.


Subject(s)
Fluorocarbons , Animals , Databases, Factual , Fluorocarbons/chemistry , Fluorocarbons/toxicity , Humans , Risk Assessment
5.
Environ Sci Technol Lett ; 7(8): 532-543, 2020 Aug 11.
Article in English | MEDLINE | ID: mdl-34307722

ABSTRACT

This commentary presents a scientific basis for managing as one chemical class the thousands of chemicals known as PFAS (per- and polyfluoroalkyl substances). The class includes perfluoroalkyl acids, perfluoroalkylether acids, and their precursors; fluoropolymers and perfluoropolyethers; and other PFAS. The basis for the class approach is presented in relation to their physicochemical, environmental, and toxicological properties. Specifically, the high persistence, accumulation potential, and/or hazards (known and potential) of PFAS studied to date warrant treating all PFAS as a single class. Examples are provided of how some PFAS are being regulated and how some businesses are avoiding all PFAS in their products and purchasing decisions. We conclude with options for how governments and industry can apply the class-based approach, emphasizing the importance of eliminating non-essential uses of PFAS, and further developing safer alternatives and methods to remove existing PFAS from the environment.

6.
Nat Commun ; 10(1): 5753, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31848345

ABSTRACT

The coordination of cell movements across spatio-temporal scales ensures precise positioning of organs during vertebrate gastrulation. Mechanisms governing such morphogenetic movements have been studied only within a local region, a single germlayer or in whole embryos without cell identity. Scale-bridging imaging and automated analysis of cell dynamics are needed for a deeper understanding of tissue formation during gastrulation. Here, we report pan-embryo analyses of formation and dynamics of all three germlayers simultaneously within a developing zebrafish embryo. We show that a distinct distribution of cells in each germlayer is established during early gastrulation via cell movement characteristics that are predominantly determined by their position in the embryo. The differences in initial germlayer distributions are subsequently amplified by a global movement, which organizes the organ precursors along the embryonic body axis, giving rise to the blueprint of organ formation. The tools and data are available as a resource for the community.


Subject(s)
Cell Movement/physiology , Embryo, Nonmammalian/embryology , Gastrulation/physiology , Germ Layers/embryology , Multimodal Imaging/methods , Zebrafish/embryology , Animals , Embryo, Nonmammalian/diagnostic imaging , Germ Layers/diagnostic imaging , Imaging, Three-Dimensional/methods , Intravital Microscopy/methods , Single-Cell Analysis/methods , Time-Lapse Imaging/methods
7.
Environ Int ; 130: 104851, 2019 09.
Article in English | MEDLINE | ID: mdl-31284092

ABSTRACT

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) confer waterproof, greaseproof, and non-stick properties when added to consumer products. They are also used for industrial purposes including in aqueous film forming foams for firefighting. PFAS are ubiquitous in the environment, are widely detected in human biomonitoring studies, and are of growing regulatory concern across federal, state, and local governments. Regulators, scientists, and citizens need to stay informed on the growing health and toxicology literature related to PFAS. OBJECTIVES: The goal of this systematic evidence map is to identify and organize the available health and toxicology related literature on a set of 29 PFAS of emerging and growing concern. SEARCH AND STUDY ELIGIBILITY: We will search the electronic database PubMed for health or toxicological studies on 29 PFAS of emerging concern. Eligible studies must contain primary research investigating the link between one or more of the PFAS of interest and a health effect, toxicological, or biological mechanistic endpoint. STUDY APPRAISAL AND SYNTHESIS METHODS: Title and abstract screening and full text review will require a single reviewer for inclusion to the next level and two independent reviewers for exclusion. Study quality will not be conducted for this evidence mapping. Study characteristics will be extracted and coded from the included studies and checked for accuracy by a second reviewer. The extracted and coded information will be visualized in a publicly available, interactive database hosted on Tableau Public. Results of the evidence mapping will be published in a narrative summary.


Subject(s)
Fluorocarbons/toxicity , Animals , Databases, Factual , Health Status , Humans
8.
Development ; 144(2): 345-355, 2017 01 15.
Article in English | MEDLINE | ID: mdl-27993986

ABSTRACT

Here, we describe an optogenetic gene expression system optimized for use in zebrafish. This system overcomes the limitations of current inducible expression systems by enabling robust spatial and temporal regulation of gene expression in living organisms. Because existing optogenetic systems show toxicity in zebrafish, we re-engineered the blue-light-activated EL222 system for minimal toxicity while exhibiting a large range of induction, fine spatial precision and rapid kinetics. We validate several strategies to spatially restrict illumination and thus gene induction with our new TAEL (TA4-EL222) system. As a functional example, we show that TAEL is able to induce ectopic endodermal cells in the presumptive ectoderm via targeted sox32 induction. We also demonstrate that TAEL can be used to resolve multiple roles of Nodal signaling at different stages of embryonic development. Finally, we show how inducible gene editing can be achieved by combining the TAEL and CRISPR/Cas9 systems. This toolkit should be a broadly useful resource for the fish community.


Subject(s)
Gene Expression Regulation, Developmental/radiation effects , Light , Optogenetics/methods , Zebrafish , Animals , Animals, Genetically Modified , CRISPR-Cas Systems/genetics , Calibration , Embryo, Nonmammalian , Genes, Reporter/radiation effects , Optogenetics/standards , Signal Transduction/genetics , Signal Transduction/radiation effects , Zebrafish/embryology , Zebrafish/genetics
9.
Dev Cell ; 36(1): 117-126, 2016 Jan 11.
Article in English | MEDLINE | ID: mdl-26766447

ABSTRACT

We demonstrate the utility of the phytochrome system to rapidly and reversibly recruit proteins to specific subcellular regions within specific cells in a living vertebrate embryo. Light-induced heterodimerization using the phytochrome system has previously been used as a powerful tool to dissect signaling pathways for single cells in culture but has not previously been used to reversibly manipulate the precise subcellular location of proteins in multicellular organisms. Here we report the experimental conditions necessary to use this system to manipulate proteins in vivo. As proof of principle, we demonstrate that we can manipulate the localization of the apical polarity protein Pard3 with high temporal and spatial precision in both the neural tube and the embryo's enveloping layer epithelium. Our optimizations of optogenetic component expression and chromophore purification and delivery should significantly lower the barrier for establishing this powerful optogenetic system in other multicellular organisms.


Subject(s)
Optogenetics , Signal Transduction/physiology , Zebrafish/metabolism , Animals , Light , Protein Transport , Zebrafish/embryology , Zebrafish/genetics
10.
Nat Methods ; 12(8): 763-5, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26098020

ABSTRACT

Infrared fluorescent proteins (IFPs) provide an additional color to GFP and its homologs in protein labeling. Drawing on structural analysis of the dimer interface, we identified a bacteriophytochrome in the sequence database that is monomeric in truncated form and engineered it into a naturally monomeric IFP (mIFP). We demonstrate that mIFP correctly labels proteins in live cells, Drosophila and zebrafish. It should be useful in molecular, cell and developmental biology.


Subject(s)
Green Fluorescent Proteins/chemistry , Infrared Rays , Amino Acid Sequence , Animals , Animals, Genetically Modified , DNA/chemistry , Developmental Biology , Drosophila melanogaster , Fluorescent Dyes/chemistry , HeLa Cells , Histidine/chemistry , Humans , Luminescent Proteins/chemistry , Mice , Molecular Sequence Data , Mutation , Neurons/metabolism , Plasmids/metabolism , Protein Conformation , Protein Multimerization , Recombinant Fusion Proteins/chemistry , Transfection , Zebrafish
11.
Nat Chem Biol ; 10(3): 196-202, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24413462

ABSTRACT

Optogenetic gene expression systems can control transcription with spatial and temporal detail unequaled with traditional inducible promoter systems. However, current eukaryotic light-gated transcription systems are limited by toxicity, dynamic range or slow activation and deactivation. Here we present an optogenetic gene expression system that addresses these shortcomings and demonstrate its broad utility. Our approach uses an engineered version of EL222, a bacterial light-oxygen-voltage protein that binds DNA when illuminated with blue light. The system has a large (>100-fold) dynamic range of protein expression, rapid activation (<10 s) and deactivation kinetics (<50 s) and a highly linear response to light. With this system, we achieve light-gated transcription in several mammalian cell lines and intact zebrafish embryos with minimal basal gene activation and toxicity. Our approach provides a powerful new tool for optogenetic control of gene expression in space and time.


Subject(s)
Activating Transcription Factors/radiation effects , Bacterial Proteins/genetics , Gene Expression/genetics , Light , Optogenetics , Animals , Cell Line , Kinetics , Models, Biological , Promoter Regions, Genetic , RNA-Binding Proteins/metabolism , T-Lymphocytes/metabolism , Zebrafish/genetics
12.
Dev Biol ; 300(1): 416-33, 2006 Dec 01.
Article in English | MEDLINE | ID: mdl-17054939

ABSTRACT

The sea urchin egg has a rich history of contributions to our understanding of fundamental questions of egg activation at fertilization. Within seconds of sperm-egg interaction, calcium is released from the egg endoplasmic reticulum, launching the zygote into the mitotic cell cycle and the developmental program. The sequence of the Strongylocentrotus purpuratus genome offers unique opportunities to apply functional genomic and proteomic approaches to investigate the repertoire and regulation of Ca(2+) signaling and homeostasis modules present in the egg and zygote. The sea urchin "calcium toolkit" as predicted by the genome is described. Emphasis is on the Ca(2+) signaling modules operating during egg activation, but the Ca(2+) signaling repertoire has ramifications for later developmental events and adult physiology as well. Presented here are the mechanisms that control the initial release of Ca(2+) at fertilization and additional signaling components predicted by the genome and found to be expressed and operating in eggs at fertilization. The initial release of Ca(2+) serves to coordinate egg activation, which is largely a phenomenon of post-translational modifications, especially dynamic protein phosphorylation. Functional proteomics can now be used to identify the phosphoproteome in general and specific kinase targets in particular. This approach is described along with findings to date. Key outstanding questions regarding the activation of the developmental program are framed in the context of what has been learned from the genome and how this knowledge can be applied to functional studies.


Subject(s)
Calcium Signaling/genetics , Calcium/physiology , Oogenesis/genetics , Ovum/physiology , Phosphoproteins/genetics , Proteome , Sea Urchins/genetics , Animals , Cell Fractionation , Female , Fertilization/genetics , Fertilization/physiology , Genome , Humans , Male , Ovum/cytology , Sperm-Ovum Interactions/physiology , Spermatozoa/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...