Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Med Image Anal ; 80: 102514, 2022 08.
Article in English | MEDLINE | ID: mdl-35717874

ABSTRACT

Growing number of methods for attenuation-coefficient map estimation from magnetic resonance (MR) images have recently been proposed because of the increasing interest in MR-guided radiotherapy and the introduction of positron emission tomography (PET) MR hybrid systems. We propose a deep-network ensemble incorporating stochastic-binary-anatomical encoders and imaging-modality variational autoencoders, to disentangle image-latent spaces into a space of modality-invariant anatomical features and spaces of modality attributes. The ensemble integrates modality-modulated decoders to normalize features and image intensities based on imaging modality. Besides promoting disentanglement, the architecture fosters uncooperative learning, offering ability to maintain anatomical structure in a cross-modality reconstruction. Introduction of a modality-invariant structural consistency constraint further enforces faithful embedding of anatomy. To improve training stability and fidelity of synthesized modalities, the ensemble is trained in a relativistic generative adversarial framework incorporating multiscale discriminators. Analyses of priors and network architectures as well as performance validation were performed on computed tomography (CT) and MR pelvis datasets. The proposed method demonstrated robustness against intensity inhomogeneity, improved tissue-class differentiation, and offered synthetic CT in Hounsfield units with intensities consistent and smooth across slices compared to the state-of-the-art approaches, offering median normalized mutual information of 1.28, normalized cross correlation of 0.97, and gradient cross correlation of 0.59 over 324 images.


Subject(s)
Deep Learning , Radiotherapy, Image-Guided , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Tomography, X-Ray Computed
2.
IEEE Trans Med Imaging ; 35(11): 2413-2424, 2016 11.
Article in English | MEDLINE | ID: mdl-27295656

ABSTRACT

Intraoperative localization of target anatomy and critical structures defined in preoperative MR/CT images can be achieved through the use of multimodality deformable registration. We propose a symmetric diffeomorphic deformable registration algorithm incorporating a modality-independent neighborhood descriptor (MIND) and a robust Huber metric for MR-to-CT registration. The method, called MIND Demons, finds a deformation field between two images by optimizing an energy functional that incorporates both the forward and inverse deformations, smoothness on the integrated velocity fields, a modality-insensitive similarity function suitable to multimodality images, and smoothness on the diffeomorphisms themselves. Direct optimization without relying on the exponential map and stationary velocity field approximation used in conventional diffeomorphic Demons is carried out using a Gauss-Newton method for fast convergence. Registration performance and sensitivity to registration parameters were analyzed in simulation, phantom experiments, and clinical studies emulating application in image-guided spine surgery, and results were compared to mutual information (MI) free-form deformation (FFD), local MI (LMI) FFD, normalized MI (NMI) Demons, and MIND with a diffusion-based registration method (MIND-elastic). The method yielded sub-voxel invertibility (0.008 mm) and nonzero-positive Jacobian determinants. It also showed improved registration accuracy in comparison to the reference methods, with mean target registration error (TRE) of 1.7 mm compared to 11.3, 3.1, 5.6, and 2.4 mm for MI FFD, LMI FFD, NMI Demons, and MIND-elastic methods, respectively. Validation in clinical studies demonstrated realistic deformations with sub-voxel TRE in cases of cervical, thoracic, and lumbar spine.


Subject(s)
Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Spine/diagnostic imaging , Spine/surgery , Surgery, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Algorithms , Humans , Phantoms, Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...