Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Rev Sci Instrum ; 95(10)2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39356194

ABSTRACT

Neutron measurement is the primary tool in the SPARC tokamak for fusion power (Pfus) monitoring, research on the physics of burning plasmas, validation of the neutronics simulation workflows, and providing feedback for machine protection. A demanding target uncertainty (10% for Pfus) and coverage of a wide dynamic range (>8 orders of magnitude going up to 5 × 1019 n/s), coupled with a fast-track timeline for design and deployment, make the development of the SPARC neutron diagnostics challenging. Four subsystems are under design that exploit the high flux of direct DT and DD plasma neutrons emanating from a shielded opening in a midplane diagnostic port. The systems comprise a set of ∼15 flux monitors, mainly ionization chambers and proportional counters for measurement of the neutron yield rate, two independent foil activation systems for measurement of the neutron fluence, a spectrometric radial neutron camera for poloidal profiling of the plasma emissivity, and a high-resolution magnetic proton recoil spectrometer for measurement of the core neutron spectrum. Together, the four systems ensure redundancy of sensors and methods and aim to provide high resolutions of time (10 ms), space (∼7 cm), and energy (<2% at 14 MeV). This paper presents the broader objectives behind the preliminary design of the SPARC neutron diagnostics and discusses the ongoing studies on neutronics, detector comparisons, prototyping, and integration with the unique infrastructure of SPARC. Engineering details of the four subsystems and the concepts for in situ neutron calibration are also highlighted.

2.
Rev Sci Instrum ; 95(9)2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39315908

ABSTRACT

Inertial Confinement Fusion and Magnetic Confinement Fusion (ICF and MCF) follow different paths toward goals that are largely common. In this paper, the claim is made that progress can be accelerated by learning from each other across the two fields. Examples of successful cross-community knowledge transfer are presented that highlight the gains from working together, specifically in the areas of high-resolution x-ray imaging spectroscopy and neutron spectrometry. Opportunities for near- and mid-term collaboration are identified, including in chemical vapor deposition diamond detector technology, using gamma rays to monitor fusion gain, handling neutron-induced backgrounds, developing radiation hard technology, and collecting fundamental supporting data needed for diagnostic analysis. Fusion research is rapidly moving into the igniting and burning regimes, posing new opportunities and challenges for ICF and MCF diagnostics. This includes new physics to probe, such as alpha heating; increasingly harsher environmental conditions; and (in the slightly longer term) the need for new plant monitoring diagnostics. Substantial overlap is expected in all of these emerging areas, where joint development across the two subfields as well as between public and private researchers can be expected to speed up advancement for all.

3.
Rev Sci Instrum ; 95(8)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39101791

ABSTRACT

The ITER Radial Gamma-Ray Spectrometer (RGRS) consists of three gamma-ray detectors observing the plasma through three collimated, coplanar, radial lines of sight (LoS). The system was initially designed to monitor the runaway electron emission and the alpha-particle density profile [Nocente et al., Nucl. Fusion 57, 076016 (2017)]. This work presents a novel technique for measuring the fusion power during D-T operation using the RGRS. This method is based on the absolute measurement of the 17 MeV fusion gamma-rays and a semi-analytical computation of their transport from the plasma source to the detectors. This approach was initially developed and tested at JET during the second D-T campaign (DTE2) on a single LoS diagnostic [Dal Molin et al., Phys. Rev. Lett. (submitted) (2024); Rebai et al., Phys. Rev. C (submitted) (2024); and Marcer et al., Nucl. Fusion (unpublished) (2024)]. This work exploits the multiple LoS of the RGRS to create a combined virtual diagnostic whose detected fraction of the total plasma emission is less affected by variations in the plasma emission profile, reducing systematic uncertainties on the estimated total emission, compared to the individual detectors.

4.
Rev Sci Instrum ; 95(8)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39093115

ABSTRACT

A new 14 MeV neutron spectrometer utilizing the magnetic proton recoil (MPR) technique is under development for the SPARC tokamak. This instrument measures neutrons by converting them into protons, whose momenta are subsequently analyzed using a series of magnets before detection by an array of scintillators known as the hodoscope. In this work, we explore various solutions for the hodoscope detectors through laboratory tests with radioactive sources and simulations. We present findings on light collection and pulse shape discrimination based on detector types, as well as optimal solutions for photo-detectors studying the differences between SiPM and PMT. Our results also led to the determination of a better optimized design for the hodoscope detectors, consisting of a 0.7 cm width and a 13 cm length EJ276D scintillation rod.

5.
Phys Rev Lett ; 133(5): 055102, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39159102

ABSTRACT

At present, magnetic confinement fusion devices rely solely on absolute neutron counting as a direct way of measuring fusion power. Absolute counting of deuterium-tritium gamma rays could provide the secondary neutron-independent technique required for the validation of scientific results and as a licensing tool for future power plants. However, this approach necessitates an accurate determination of the gamma-ray-to-neutron branching ratio. The gamma-ray-to-neutron branching ratio for the deuterium-tritium reaction ^{3}H(^{2}H,γ)^{5}He/^{3}H(^{2}H,n)^{4}He was determined in magnetic confinement fusion plasmas at the Joint European Torus in predominantly deuterium beam heated plasmas. The branching ratio was found to be equal to (2.4±0.5)×10^{-5} over the deuterium energy range of (80±20) keV. This accurate determination of the deuterium-tritium branching ratio paves the way for a direct and neutron-independent measurement of fusion power in magnetic confinement fusion reactors, based on the absolute counting of deuterium-tritium gamma rays.

6.
Rev Sci Instrum ; 94(1): 013501, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36725552

ABSTRACT

The only method for assessing the fusion power throughput of a deuterium-tritium (DT) reactor presently relies on determining the absolute number of 14 MeV neutrons produced in the DT plasma. An independent method, developed and investigated during the recent DT campaign at the Joint European Torus, is based on the absolute counting of 17 MeV gamma rays produced by the competing T(D, γ)5He reaction that features a very weak branching ratio (about 3-6 × 10-6) when compared to the main T(D, n)4He reaction. The state-of-the-art spectrometer used for gamma-ray measurements in magnetic confinement fusion plasmas is LaBr3(Ce) scintillator detectors, although they require significant neutron shielding to extract a relatively weak gamma-ray signal from a much more abundant neutron field. A better approach relies on a gamma-ray detector that is intrinsically insensitive to neutrons. We have advanced the design of a gamma-ray counter based on the Cherenkov effect for gamma-rays whose energy exceeds 11 MeV, optimized to work in the neutron-rich environment of a steady-state, magnetically confined fusion plasma device. The gamma-rays interact with an aluminum window and extract electrons that move into the radiator emitting photons via the Cherenkov effect. Since the Cherenkov light consists of few photons (25 on average) in the far UV band (100-200 nm), a pre-amplifier is required to transport the photons to the neutron-shielded location, which may be a few meters away, where the readout elements of the detector, either a silicon or standard photomultiplier tube, are placed. The present work focuses on the development of a scintillating GEM (Gas Electron Multiplier) based pre-amplifier that acts as a Cherenkov photon pre-amplifier and wavelength shifter. This paper presents the result of a set of Garfield++ simulations developed to find the optimal GEM working parameters. A photon gain of 100 is obtained by biasing a single GEM foil to 1 kV.

7.
Rev Sci Instrum ; 93(11): 113512, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36461481

ABSTRACT

Dedicated nuclear diagnostics have been designed, developed, and built within EUROFUSION enhancement programs in the last ten years for installation at the Joint European Torus and capable of operation in high power Deuterium-Tritium (DT) plasmas. The recent DT Experiment campaign, called DTE2, has been successfully carried out in the second half of 2021 and provides a unique opportunity to evaluate the performance of the new nuclear diagnostics and for an understanding of their behavior in the record high 14 MeV neutron yields (up to 4.7 × 1018 n/s) and total number of neutrons (up to 2 × 1019 n) achieved on a tokamak. In this work, we will focus on the 14 MeV high resolution neutron spectrometers based on artificial diamonds which, for the first time, have extensively been used to measure 14 MeV DT neutron spectra with unprecedented energy resolution (Full Width at Half Maximum of ≈1% at 14 MeV). The work will describe their long-term stability and operation over the DTE2 campaign as well as their performance as neutron spectrometers in terms of achieved energy resolution and high rate capability. This important experience will be used to outline the concept of a spectroscopic neutron camera for the SPARC tokamak. The proposed neutron camera will be the first one to feature the dual capability to measure (i) the 2.5 and 14 MeV neutron emissivity profile via the conventional neutron detectors based on liquid or plastics scintillators and (ii) the 14 MeV neutron spectral emission via the use of high-resolution diamond-based spectrometers. The new opportunities opened by the spectroscopic neutron camera to measure plasma parameters will be discussed.

8.
Rev Sci Instrum ; 93(9): 093515, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36182493

ABSTRACT

The Joint European Torus (JET) is the only tokamak in the world able to operate in Deuterium-Tritium (DT) plasmas. A successful DT experimental campaign, the DTE2, has recently been carried out, providing unique opportunities for studying both physics and technological aspects. In particular, it allowed us to investigate and benchmark the solutions adopted to attenuate the significant 14 MeV neutron flux, needed to enable high-resolution gamma-ray spectroscopy measurements on a tokamak. While in inertial confinement experiments, gamma-rays and neutrons are discriminated through time-of-flight techniques; in magnetic confinement experiments, the neutron attenuators are a key element to allow gamma-ray measurements in order to reestablish the 1 × 105 to 1 background to signal ratio. In this paper, the role of the reference neutron attenuators at JET, based on LiH, has been analyzed and described.

9.
Rev Sci Instrum ; 93(9): 093525, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36182521

ABSTRACT

The most performant deuterium-tritium (DT) plasma discharges realized by the Joint European Torus (JET) tokamak in the recent DT campaign have produced neutron yields on the order of 1018 n/s. At such high neutron yields, gamma-ray spectroscopy measurements with scintillators are challenging as events from the neutron-induced background often dominate over the signal, leading to a significant fraction of pileup events and instability of the photodetector gain along with the consequent degradation of the reconstructed spectrum. Here, we describe the solutions adopted for the tangential lanthanum bromide spectrometer installed at JET. A data acquisition system with free streaming mode digitization capabilities for the entire duration of the discharge has been used to solve dead-time related issues and a data reconstruction code with pileup recovery and photodetector gain drift restoration has been implemented for off-line analysis of the data. This work focuses on the acquired data storage and parsing, with a detailed explanation of the pileup recovery and gain drift restoration algorithms.

10.
Ann Cardiol Angeiol (Paris) ; 71(1): 6-10, 2022 Feb.
Article in French | MEDLINE | ID: mdl-34140143

ABSTRACT

INTRODUCTION: Obesity is a worldwide health problem. Masked hypertension is a relatively recent reported entity with a diagnostic problem. The aim of this study was to determine the clinical and paraclinical characteristics and to identify the predictive factors of masked hypertension in obese patients. METHODS: It is a prospective study including obese patients with normal arterial pressure at office. All of these patients were given ambulatory blood pressure measurement (ABPM) to screen for masked hypertension, laboratory tests and a complete echocardiography study. RESULTS: A total of 50 patients were included. The mean age was 46.52±10.4 years. The mean systolic blood pressure (BP) at office was 120.8±8.8mmHg and the mean diastolic BP was 75±7.3mmHg. The prevalence of masked hypertension in obese adults was 36% with a predominantly non-dipper profile (38%). The study of echocardiographic parameters found dilated left atrium (LA) in 16 patients (32%). The left ventricle (LV) was hypertrophied in 32 patients (64%). The overall LV global longitudinal strain (GLS) was on average -18.85±0.9% and the LA GLS was on average 37.35±4.5%. In our study, metabolic syndrome, low HDL cholesterol, elevated fasting blood glucose, hyperuricemia, LA dilatation, LV hypertrophy, diastolic LV dysfunction and altered myocardial deformities were factors associated with masked hypertension in obese adults. CONCLUSION: It is important to screen for hypertension by ambulatory measurement in at-risk obese patients who present associated cardiovascular risk factors to reduce morbidity and mortality. Echocardiography and speckle tracking analysis could be helpful in detection sub-clinical myocardial deterioration in obese patients with masked hypertension.


Subject(s)
Hypertension , Masked Hypertension , Adult , Blood Pressure , Blood Pressure Monitoring, Ambulatory , Humans , Hypertension/complications , Hypertension/epidemiology , Masked Hypertension/complications , Masked Hypertension/diagnosis , Masked Hypertension/epidemiology , Middle Aged , Obesity/complications , Obesity/epidemiology , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL