Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Plant Dis ; 104(1): 168-178, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31697224

ABSTRACT

Apple scab, caused by Venturia inaequalis, is the most common fruit and foliar disease in commercial apple production worldwide. Early in the production season, preventative contact fungicide sprays are essential for protecting highly susceptible continuously unfolding and expanding young leaves. In South Africa, mancozeb is a key contact fungicide used for controlling apple scab early in the season. The current study developed deposition benchmarks indicative of the biological efficacy of mancozeb against apple scab, using a laboratory-based apple seedling model system. The model system employed a yellow fluorescent pigment that is known to be an effective tracer of mancozeb deposition. A concentration range of mancozeb (0.15 to 1 times the registered dosage) and fluorescent pigment concentrations was sprayed onto seedling leaves, which yielded various fluorescent particle coverage (FPC%) levels. Modeling of the FPC% values versus percent disease control yielded different benchmark values when disease quantification was conducted using two different methods. Thermal infrared imaging (TIRI) disease quantification resulted in a benchmark model where 0.40%, 0.79%, and 1.35 FPC% yielded 50, 75, and 90% apple scab control, respectively. These FPC% values were higher than the benchmarks (0.10, 0.20, and 0.34 FPC%, respectively) obtained with quantitative real-time PCR (qPCR) disease quantification. The qPCR benchmark model is recommended as a guideline for evaluating the efficacy of mancozeb sprays on leaves in apple orchards since the TIRI benchmark model underestimated disease control. The TIRI benchmark model yielded 68% disease control at the lowest mancozeb dosage, yet no visible lesion developed at this dosage. Both benchmark models showed that mancozeb yielded high levels of disease control at very low concentrations; for the qPCR benchmark model the FPC% value of the FPC90 (90% control) corresponded to 0.15 times that of the registered mancozeb concentration in South Africa, i.e., 85% lower than the registered dosage.


Subject(s)
Ascomycota , Malus , Maneb , Plant Diseases , Zineb , Ascomycota/drug effects , Benchmarking , Malus/microbiology , Maneb/chemistry , Maneb/pharmacology , Plant Diseases/prevention & control , Plant Leaves/microbiology , South Africa , Zineb/chemistry , Zineb/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL