Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
Add more filters










Publication year range
1.
Front Public Health ; 12: 1191788, 2024.
Article in English | MEDLINE | ID: mdl-38439749

ABSTRACT

Background: In addition to the clinical burden, asthma is responsible for a high economic burden. However, little is known about the economic burden of asthma prior to death. Objective: We performed an economic analysis to describe the costs during 12 and 24 months prior to asthma death between 2013 and 2017 in France. Methods: An observational cohort study was established using the French national health insurance database. Direct medical and non-medical costs, as well as costs related to absence from the workplace, were included in the analysis. Results: In total, 3,829 patients were included in the final analysis. Over 24 and 12 months prior to death, total medical costs per patient were €27,542 [26,545-28,641] and €16,815 [16,164-17,545], respectively. Total medical costs clearly increased over 24 months prior to death. Over 12 months prior to death, costs increased significantly according to age categories, with mean total costs of €8,592, €15,038, and €17,845, respectively, for the categories <18 years old, 18-75 years old, and 75+ years old (p < 0.0001). Over 12 months prior to death, costs were statistically higher in patients with a dispensation of six or more SABA canisters compared to those with a dispensation of five or less canisters (p < 0.0001). In multivariate analysis, comorbidities, hospital as location of death, and dispensation of 12 or more canisters of SABA per year are independent factors of the highest costs. Conclusion: To conclude, the economic burden of asthma death is high and increases with time, age, and SABA dispensation.


Subject(s)
Asthma , Financial Stress , Humans , Adolescent , Young Adult , Adult , Middle Aged , Aged , Databases, Factual , France/epidemiology , Hospitals
4.
J Allergy Clin Immunol ; 153(1): 182-192.e7, 2024 01.
Article in English | MEDLINE | ID: mdl-37748654

ABSTRACT

BACKGROUND: Despite their central role in peanut allergy, human monoclonal IgE antibodies have eluded characterization. OBJECTIVE: We sought to define the sequences, affinities, clonality, and functional properties of human monoclonal IgE antibodies in peanut allergy. METHODS: We applied our single-cell RNA sequencing-based SEQ SIFTER discovery platform to samples from allergic individuals who varied by age, sex, ethnicity, and geographic location in order to understand commonalities in the human IgE response to peanut allergens. Select antibodies were then recombinantly expressed and characterized for their allergen and epitope specificity, affinity, and functional properties. RESULTS: We found striking convergent evolution of IgE monoclonal antibodies (mAbs) from several clonal families comprising both memory B cells and plasmablasts. These antibodies bound with subnanomolar affinity to the immunodominant peanut allergen Ara h 2, specifically a linear, repetitive motif. Further characterization of these mAbs revealed their ability to single-handedly cause affinity-dependent degranulation of human mast cells and systemic anaphylaxis on peanut allergen challenge in humanized mice. Finally, we demonstrated that these mAbs, reengineered as IgGs, inhibit significant, but variable, amounts of Ara h 2- and peanut-mediated degranulation of mast cells sensitized with allergic plasma. CONCLUSIONS: Convergent evolution of IgE mAbs in peanut allergy is a common phenomenon that can reveal immunodominant epitopes on major allergenic proteins. Understanding the functional properties of these molecules is key to developing therapeutics, such as competitive IgG inhibitors, that are able to stoichiometrically outcompete endogenous IgE for allergen and thereby prevent allergic cascade in cases of accidental allergen exposure.


Subject(s)
Peanut Hypersensitivity , Humans , Animals , Mice , Immunodominant Epitopes , Antigens, Plant , Glycoproteins , Immunoglobulin E , Epitopes , Antibodies, Monoclonal , Allergens , Arachis , 2S Albumins, Plant
5.
Allergy ; 78(12): 3118-3135, 2023 12.
Article in English | MEDLINE | ID: mdl-37555488

ABSTRACT

Autoimmunity is the break of tolerance to self-antigens that leads to organ-specific or systemic diseases often characterized by the presence of pathogenic autoreactive antibodies (AAb) produced by plasmablast and/or plasma cells. AAb are prevalent in the general population and not systematically associated with clinical symptoms. In contrast, in some individuals, these AAb are pathogenic and drive the development of signs and symptoms of antibody-mediated autoimmune diseases (AbAID). AAb production, isotype profiles, and glycosylations are promoted by pro-inflammatory triggers linked to genetic, environmental, and hormonal parameters. Recent evidence supports a role for pathogenic AAb of the IgE isotype in a number of AbAID. Autoreactive IgE can drive the activation of mast cells, basophils, and other types of FcεRI-bearing cells and may play a role in promoting autoantibody production and other pro-inflammatory pathways. In this review, we discuss the current knowledge on the pathogenicity of autoreactive IgE in AbAID and their status as therapeutic targets. We also highlight unresolved issues including the need for assays that reproducibly quantify IgE AAbs, to validate their diagnostic and prognostic value, and to further study their pathophysiological contributions to AbAID.


Subject(s)
Autoimmune Diseases , Immunoglobulin E , Humans , Autoimmune Diseases/etiology , Autoimmune Diseases/therapy , Autoimmune Diseases/metabolism , Basophils , Omalizumab , Autoimmunity , Receptors, IgE/metabolism
7.
J Exp Med ; 220(10)2023 10 02.
Article in English | MEDLINE | ID: mdl-37462672

ABSTRACT

Mast cells (MCs) are tissue-resident immune cells that exhibit homeostatic and neuron-associated functions. Here, we combined whole-tissue imaging and single-cell RNA sequencing datasets to generate a pan-organ analysis of MCs in mice and humans at steady state. In mice, we identify two mutually exclusive MC populations, MrgprB2+ connective tissue-type MCs and MrgprB2neg mucosal-type MCs, with specific transcriptomic core signatures. While MrgprB2+ MCs develop in utero independently of the bone marrow, MrgprB2neg MCs develop after birth and are renewed by bone marrow progenitors. In humans, we unbiasedly identify seven MC subsets (MC1-7) distributed across 12 organs with different transcriptomic core signatures. MC1 are preferentially enriched in the bladder, MC2 in the lungs, and MC4, MC6, and MC7 in the skin. Conversely, MC3 and MC5 are shared by most organs but not skin. This comprehensive analysis offers valuable insights into the natural diversity of MC subtypes in both mice and humans.


Subject(s)
Mast Cells , Mucous Membrane , Humans , Mice , Animals , Transcriptome/genetics
11.
Ther Adv Respir Dis ; 16: 17534666221130217, 2022.
Article in English | MEDLINE | ID: mdl-36239261

ABSTRACT

BACKGROUND: Although asthma mortality declined sharply until the mid-2000s, a stagnation in mortality has been observed over the past decade in different countries. OBJECTIVE: The objective of this study is to describe healthcare resource consumption for patients who died from asthma in France. METHOD: This study was conducted using data from the French National Health Data System. Patients who died from asthma between 2013 and 2017 were identified by the ICD10 codes J45 and J46. Health care consumption data were collected. Patients were categorized into four categories according to age: ⩾75, (18-75), (12-18), (0-12). Daily doses of ICS were categorized according to GINA guidelines. RESULTS: A total of 3829 patients were included. No ICS or an inadequate ICS dose was observed in 43.8%, 50.6%, 48.1%, and 54.0% of patients aged ⩾75, (18-74), (12-18), and (0-12) years, respectively. Dispensation of six or more SABA canisters was observed in 37.2%, 49.0%, and 70.3% of patients aged of ⩾75, (18-75), and (12-18) years, respectively. Omalizumab dispensation rate was very low [1.1% and 2.8% in patients aged ⩾75 and (18-75) years)]. The proportion of patients with a pulmonologist office visit was 13.8% and 14.6% in patients ⩾75 and (18-75) years, respectively. A lung function test was noted in only 18.6%, 28.3%, and 25.9% of patients ⩾75, (18-75) and (12-18) years, respectively. CONCLUSION: Half of the patients who died from asthma received inadequate ICS doses and only a small proportion had access to biological therapies. Less than 15% were referred to a specialist.


Subject(s)
Anti-Asthmatic Agents , Asthma , Administration, Inhalation , Adrenal Cortex Hormones/therapeutic use , Aged , Anti-Asthmatic Agents/adverse effects , Asthma/drug therapy , Delivery of Health Care , France/epidemiology , Humans , Omalizumab/therapeutic use
12.
J Immunol ; 209(7): 1243-1251, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36165182

ABSTRACT

Mouse models of active systemic anaphylaxis rely predominantly on IgG Abs forming IgG-allergen immune complexes that induce IgG receptor-expressing neutrophils and monocytes/macrophages to release potent mediators, leading to systemic effects. Whether anaphylaxis initiates locally or systemically remains unknown. In this study, we aimed at identifying the anatomical location of IgG-allergen immune complexes during anaphylaxis. Active systemic anaphylaxis was induced following immunization with BSA and i.v. challenge with fluorescently labeled BSA. Ag retention across different organs was examined using whole-body fluorescence imaging, comparing immunized and naive animals. Various mouse models and in vivo deletion strategies were employed to determine the contribution of IgG receptors, complement component C1q, myeloid cell types, and anaphylaxis mediators. We found that following challenge, Ag diffused systemically, but specifically accumulated in the lungs of mice sensitized to that Ag, where it formed large Ab-dependent aggregates in the vasculature. Ag retention in the lungs did not rely on IgG receptors, C1q, neutrophils, or macrophages. IgG2a-mediated, but neither IgG1- nor IgG2b-mediated, passive systemic anaphylaxis led to Ag retention in the lung. Neutrophils and monocytes significantly accumulated in the lungs after challenge and captured high amounts of Ag, which led to downmodulation of surface IgG receptors and triggered their activation. Thus, within minutes of systemic injection in sensitized mice, Ag formed aggregates in the lung and liver vasculature, but accumulated specifically and dose-dependently in the lung. Neutrophils and monocytes recruited to the lung captured Ag and became activated. However, Ag aggregation in the lung vasculature was not necessary for anaphylaxis induction.


Subject(s)
Anaphylaxis , Allergens , Animals , Antigen-Antibody Complex , Complement C1q , Disease Models, Animal , Immunoglobulin G , Lung , Mice , Mice, Inbred C57BL , Receptors, Complement , Receptors, IgG
13.
FASEB J ; 36(5): e22297, 2022 05.
Article in English | MEDLINE | ID: mdl-35394686

ABSTRACT

Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder for which dietary interventions can be a useful treatment. In recent years, the low-FODMAP approach is gaining traction in this regard. The fermentation of these non-absorbed carbohydrates by the gut microbiota can generate toxic glycating metabolites, such as methylglyoxal. These metabolites can have harmful effects by their role in the generation of advanced glycation end products (AGEs), which activates Receptor for AGEs (AGER). Mast cells can be stimulated by AGEs and play a role in IBS. We have treated mice with lactose or fructo-oligosaccharides (FOS), with or without co-administration of pyridoxamine and investigated the colonic mucus barrier. We have found that an increased intake of lactose and fructo-oligosaccharides induces a dysregulation of the colonic mucus barrier, increasing mucus discharge in empty colon, while increasing variability and decreasing average thickness mucus layer covering the fecal pellet. Changes were correlated with increased mast cell counts, pointing to a role for the crosstalk between these and goblet cells. Additionally, AGE levels in colonic epithelium were increased by treatment with the selected fermentable carbohydrates. Observed effects were prevented by co-treatment with anti-glycation agent pyridoxamine, implicating glycation processes in the negative impact of fermentable carbohydrate ingestion. This study shows that excessive intake of fermentable carbohydrates can cause colonic mucus barrier dysregulation in mice, by a process that involves glycating agents and increased mucosal mast cell counts.


Subject(s)
Irritable Bowel Syndrome , Animals , Cell Count , Lactose/pharmacology , Mice , Mucus/metabolism , Oligosaccharides/metabolism , Pyridoxamine
15.
Pharmacol Ther ; 237: 108167, 2022 09.
Article in English | MEDLINE | ID: mdl-35283171

ABSTRACT

Asthma is the most common chronic lung disease, affecting more than 250 million people worldwide. The heterogeneity of asthma phenotypes represents a challenge for adequate assessment and treatment of the disease. However, approximately 50% of asthma patients present with chronic type 2 inflammation initiated by alarmins, such as IL-33 and thymic stromal lymphopoietin (TSLP), and driven by the TH2 interleukins IL-4, IL-5 and IL-13. These cytokines have therefore become important therapeutic targets in asthma. Here, we discuss current knowledge on the structure and functions of these cytokines in asthma. We review preclinical and clinical data obtained with monoclonal antibodies (mAbs) targeting these cytokines or their receptors, as well as novel strategies under development, including bispecific mAbs, designed ankyrin repeat proteins (DARPins), small molecule inhibitors and vaccines targeting type 2 cytokines.


Subject(s)
Asthma , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Cytokines/metabolism , Humans
17.
Respir Med Res ; 81: 100882, 2022 May.
Article in English | MEDLINE | ID: mdl-34983012

ABSTRACT

BACKGROUND: Approval of biologics has recently revolutionized T2 severe asthma management. However, predictive biomarkers remain highly needed to improve patient's selection. OBJECTIVE: This study aims to determine whether serum immunoglobulins (Igs) levels might be predictive biomarkers of response to anti-interleukin-5 (IL5)/IL5Rα therapies. METHODS: Severe asthma patients eligible for mepolizumab or benralizumab were included herein. Serum immunoglobulin quantification was performed at baseline before mepolizumab or benralizumab initiation. After a 6-month treatment of mepolizumab or benralizumab, patients presented a second serum immunoglobulin quantification. The treatment response was evaluated by the GETE (Global Evaluation of Treatment Effectiveness) score at 6 months. RESULTS: A total of 50 patients were included. Median age was 56 [IQR 48.8-65.3] and 50% were females. Compared to baseline, a significant increase in IgG was observed at 6 months (9.2 [7.8-10.2] g/l vs 10.1 [8.8-11.1] g/l, p = 0.04). The area under the ROC curve was 0.58 [95%IC 0.40-0.77] for blood eosinophil count (p = 0.37), 0.75 [95%IC: 0.58-0.92] for serum IgG concentration (p = 0.009) for predicting the treatment response. According to the Youden index, serum IgG concentration ≥ 9.2 g/l predicts the response to anti-IL5 therapies with a sensitivity of 76.9% and a specificity of 75.7%. CONCLUSION: Baseline serum IgG concentrations may be a useful tool to predict the response to anti-IL5/IL5Rα therapies but should be confirmed in larger clinical trials. Interestingly, anti-IL5/IL5Rα therapies are associated with a significant increase in serum IgG concentrations at 6 months.


Subject(s)
Asthma , Interleukin-5 , Asthma/diagnosis , Asthma/drug therapy , Biomarkers , Eosinophils , Female , Humans , Immunoglobulin G/therapeutic use , Interleukin-5/immunology , Interleukin-5 Receptor alpha Subunit/immunology , Male , Middle Aged
18.
Clin Rev Allergy Immunol ; 62(1): 216-231, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34550555

ABSTRACT

Immunoglobulin E (IgE)-mediated food allergy is a real public health problem worldwide. The prevalence of food allergy is particularly high in children. Patients with food allergy experience high morbidity with a change in quality of life due to the risk of severe anaphylaxis. Current treatment options are poor. Allergen avoidance is widely recommended but exposes patients to accidental ingestion. Oral immunotherapy is also used in patients with food allergies to the most common allergens. Oral immunotherapy consists of a daily administration of small, gradually increasing amounts of allergens to induce desensitisation. This procedure aims at inducing immune tolerance to the ingested food allergens. However, some patients experience adverse reactions and discontinue oral immunotherapy.Given that IgE plays a crucial role in food allergy and anti-IgE are effective in allergic asthma, the use of anti-IgE therapeutic monoclonal antibodies (mAbs) such as omalizumab has been assessed in food allergy patients. The use of omalizumab as a monotherapy in food allergy has not been extensively studied but looks promising. There is more published evidence regarding the effect of omalizumab and oral immunotherapy in food allergy. Given the promising results of oral immunotherapy regarding sustained tolerance in clinical trials and the potential capacity of omalizumab to reduce symptoms in case of accidental exposure, a strategy combining oral immunotherapy with omalizumab pre-treatment has been suggested as a safer option in patients with severe food allergy compared to isolated therapy. Omalizumab seems useful in ensuring safer administration of oral immunotherapy with the oral immunotherapy maintenance dose being reached more rapidly. Quality-of-life improvement is greater with oral immunotherapy + omalizumab compared to oral immunotherapy alone. Moreover, sustained unresponsiveness is achieved more frequently with omalizumab. Considering that precision medicine and personalised therapy are major goals for allergic diseases, predictive biomarkers are crucial in order to identify food allergy patients more likely to benefit from anti-IgE therapies.


Subject(s)
Food Hypersensitivity , Quality of Life , Allergens , Antibodies, Anti-Idiotypic , Child , Desensitization, Immunologic/methods , Humans , Immunotherapy/methods , Omalizumab/therapeutic use
19.
Allergy ; 77(2): 499-512, 2022 02.
Article in English | MEDLINE | ID: mdl-33840121

ABSTRACT

BACKGROUND: In contrast to their clearly defined roles in allergic diseases, the physiologic functions of Immunoglobulin E antibodies (IgEs) and mast cells (MCs) remain enigmatic. Recent research supports the toxin hypothesis, showing that MCs and IgE-related type 2 immune responses can enhance host defense against certain noxious substances, including honeybee venom (BV). However, the mechanisms by which MCs can interfere with BV toxicity are unknown. In this study, we assessed the role of IgE and certain MC products in MC-mediated BV detoxification. METHODS: We applied in vitro and in vivo fluorescence microscopyimaging, and flow cytometry, fibroblast-based toxicity assays and mass spectrometry to investigate IgE-mediated detoxification of BV cytotoxicity by mouse and human MCs in vitro. Pharmacologic strategies to interfere with MC-derived heparin and proteases helped to define the importance of specific detoxification mechanisms. RESULTS: Venom-specific IgE increased the degranulation and cytokine responses of MCs to BV in vitro. Passive serum sensitization enhanced MC degranulation in vivo. IgE-activated mouse or human MCs exhibited enhanced potential for detoxifying BV by both proteolytic degradation and heparin-related interference with toxicity. Mediators released by IgE-activated human MCs efficiently degraded multiple BV toxins. CONCLUSIONS: Our results both reveal that IgE sensitization enhances the MC's ability to detoxify BV and also assign efficient toxin-neutralizing activity to MC-derived heparin and proteases. Our study thus highlights the potential importance of IgE, MCs, and particular MC products in defense against BV.


Subject(s)
Bee Venoms , Mast Cells , Allergens/metabolism , Animals , Cell Degranulation , Heparin/metabolism , Humans , Immunoglobulin E , Mice , Peptide Hydrolases/metabolism
20.
J Exp Med ; 218(10)2021 10 04.
Article in English | MEDLINE | ID: mdl-34477811

ABSTRACT

Gain-of-function mutations in NLRP3 are responsible for a spectrum of autoinflammatory diseases collectively referred to as "cryopyrin-associated periodic syndromes" (CAPS). Treatment of CAPS patients with IL-1-targeted therapies is effective, confirming a central pathogenic role for IL-1ß. However, the specific myeloid cell population(s) exhibiting inflammasome activity and sustained IL-1ß production in CAPS remains elusive. Previous reports suggested an important role for mast cells (MCs) in this process. Here, we report that, in mice, gain-of-function mutations in Nlrp3 restricted to neutrophils, and to a lesser extent macrophages/dendritic cells, but not MCs, are sufficient to trigger severe CAPS. Furthermore, in patients with clinically established CAPS, we show that skin-infiltrating neutrophils represent a substantial biological source of IL-1ß. Together, our data indicate that neutrophils, rather than MCs, can represent the main cellular drivers of CAPS pathology.


Subject(s)
Cryopyrin-Associated Periodic Syndromes/genetics , Cryopyrin-Associated Periodic Syndromes/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Neutrophils , Adolescent , Adult , Aged, 80 and over , Animals , Female , Gain of Function Mutation , Humans , Interleukin-1beta/metabolism , Male , Mast Cells/pathology , Mice, Transgenic , Middle Aged , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neutrophils/pathology , Neutrophils/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...