Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Lung Cell Mol Physiol ; 325(4): L487-L499, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37643008

ABSTRACT

Transforming growth factor-ß1 (TGFß1) is the key profibrotic cytokine in idiopathic pulmonary fibrosis (IPF), but the primary source of this cytokine in this disease is unknown. Platelets have abundant stores of TGFß1, although the role of these cells in IPF is ill-defined. In this study, we investigated whether platelets, and specifically platelet-derived TGFß1, mediate IPF disease progression. Patients with IPF and non-IPF patients were recruited to determine platelet reactivity, and separate cohorts of patients with IPF were followed for mortality. To study whether platelet-derived TGFß1 modulates pulmonary fibrosis (PF), mice with a targeted deletion of TGFß1 in megakaryocytes and platelets (TGFß1fl/fl.PF4-Cre) were used in the well-characterized bleomycin-induced pulmonary fibrosis (PF) animal model. In a discovery cohort, we found significantly higher mortality in patients with IPF who had elevated platelet counts within the normal range. However, our validation cohort did not confirm this observation, despite significantly increased platelets, neutrophils, active TGFß1, and CCL5, a chemokine produced by inflammatory cells, in the blood, lung, and bronchoalveolar lavage (BAL) of patients with IPF. In vivo, we showed that despite platelets being readily detected within the lungs of bleomycin-treated mice, neither the degree of pulmonary inflammation nor fibrosis was significantly different between TGFß1fl/fl.PF4-Cre and control mice. Our results demonstrate for the first time that platelet-derived TGFß1 does not significantly mediate inflammation or fibrosis in a PF animal model. Furthermore, our human studies revealed blood platelet counts do not consistently predict mortality in IPF but other platelet-derived mediators, such as C-C chemokine ligand 5 (CCL5), may promote neutrophil recruitment and human IPF.NEW & NOTEWORTHY Platelets are a rich source of profibrotic TGFß; however, the role of platelets in idiopathic pulmonary fibrosis (IPF) is unclear. We identified that patients with IPF have significantly more platelets, neutrophils, and active TGFß in their airways than control patients. Using an animal model of IPF, we demonstrated that platelet-derived TGFß does not significantly drive lung fibrosis or inflammation. Our findings offer a better understanding of platelets in both human and animal studies of IPF.


Subject(s)
Idiopathic Pulmonary Fibrosis , Humans , Mice , Animals , Idiopathic Pulmonary Fibrosis/pathology , Lung/pathology , Transforming Growth Factor beta1/pharmacology , Fibrosis , Transforming Growth Factor beta , Bleomycin/adverse effects , Inflammation/pathology , Transforming Growth Factors/adverse effects
2.
Front Immunol ; 12: 691957, 2021.
Article in English | MEDLINE | ID: mdl-34484188

ABSTRACT

Neutrophil migration into the airways is an important process to fight infection and is mediated by cell adhesion molecules. The intercellular adhesion molecules, ICAM-1 (CD54) and ICAM-2 (CD102) are known ligands for the neutrophil integrins, lymphocyte function associated antigen (LFA)-1 (αLß2; CD11a/CD18), and macrophage-1 antigen (Mac-1;αMß2;CD11b/CD18) and are implicated in leukocyte migration into the lung. However, it is ill-defined how neutrophils exit the lung and the role for ICAMs in trans-epithelial migration (TEpM) across the bronchial or alveolar epithelium. We found that human and murine alveolar epithelium expressed ICAM-1, whilst the bronchial epithelium expressed ICAM-2, and both were up-regulated during inflammatory stimulation in vitro and in inflammatory lung diseases such as cystic fibrosis. Although ß2 integrins interacting with ICAM-1 and -2 mediated neutrophil migration across human bronchial epithelium in vitro, neither ICAM-2 nor LFA-1 binding of ICAM-1 mediated murine neutrophil migration into the lung or broncho-alveolar space during LPS-induced inflammation in vivo. Furthermore, TEpM of neutrophils themselves resulted in increased epithelial junctional permeability and reduced barrier function in vitro. This suggests that although ß2 integrins interacting with ICAMs may regulate low levels of neutrophil traffic in healthy lung or early in inflammation when the epithelial barrier is intact; these interactions may be redundant later in inflammation when epithelial junctions are disrupted and no longer limit TEpM.


Subject(s)
Antigens, CD/immunology , Cell Adhesion Molecules/immunology , Intercellular Adhesion Molecule-1/immunology , Neutrophils/immunology , Respiratory Mucosa/immunology , Animals , CD18 Antigens/immunology , Cell Movement , Cells, Cultured , Epithelial Cells/immunology , Humans , Inflammation/immunology , Lung/immunology , Lymphocyte Function-Associated Antigen-1/immunology , Macrophages/immunology , Mice, Inbred C57BL , Mice, Knockout , Neutrophils/physiology , Up-Regulation
3.
Front Immunol ; 10: 2643, 2019.
Article in English | MEDLINE | ID: mdl-31803183

ABSTRACT

Cystic fibrosis (CF) results from deficient CF transmembrane conductance regulator (CFTR) protein activity leading to defective epithelial ion transport. Pulmonary degradation due to excessive inflammation is the main cause of morbidity and mortality in CF patients. By analysing miRNAs (small RNAseq) in human primary air-liquid interface cell cultures, we measured the overexpression of miR-636 in CF patients compared to non-CF controls. We validated these results in explant biopsies and determined that the mechanism underlying miR-636 overexpression is linked to inflammation. To identify specific targets, we used bioinformatics analysis to predict whether miR-636 targets the 3'-UTR mRNA regions of IL1R1 and RANK (two pro-inflammatory cytokine receptors), IKBKB (a major protein in the NF-κB pathway), and FAM13A (a modifier gene of CF lung phenotype implicated in epithelial remodelling). Using bronchial epithelial cells from CF patients to conduct a functional analysis, we showed a direct interaction between miR-636 and IL1R1, RANK, and IKBKB, but not with FAM13A. These interactions led to a decrease in IL1R1 and IKKß protein expression levels, while we observed an increase in RANK protein expression levels following the overexpression of miR-636. Moreover, NF-κB activity and IL-8 and IL-6 secretions decreased following the transfection of miR-636 mimics in CF cells. Similar but opposite effects were found after transfection with an antagomiR-636 in the same cells. Furthermore, we demonstrated that miR-636 was not regulated by Pseudomonas aeruginosa in our model. We went on to show that miR-636 is raised in the blood neutrophils, but not in the plasma, of CF patients and may have potential as a novel biomarker. Collectively, our findings reveal a novel actor for the regulation of inflammation in CF, miR-636, which is able to reduce constitutive NF-κB pathway activation when it is overexpressed.


Subject(s)
Cystic Fibrosis/complications , MicroRNAs/physiology , Pneumonia/etiology , Cells, Cultured , Humans , I-kappa B Kinase/genetics , Interleukin-6/biosynthesis , Interleukin-8/biosynthesis , MicroRNAs/analysis , NF-kappa B/physiology , Receptor Activator of Nuclear Factor-kappa B/genetics , Receptors, Interleukin-1 Type I/genetics , Signal Transduction
4.
Front Pharmacol ; 9: 545, 2018.
Article in English | MEDLINE | ID: mdl-29922157

ABSTRACT

Cystic fibrosis (CF) is characterized by a chronic pulmonary inflammation. In CF, glucocorticoids (GC) are widely used, but their efficacy and benefit/risk ratio are still debated. In plasma, corticosteroid-binding globulin (CBG) binds 90% of GC and delivers them to the inflammatory site. The main goal of this work was to study CBG expression in CF patients in order to determine whether CBG could be used to optimize GC treatment. The expression of CBG was measured in liver samples from CF cirrhotic and non-CF cirrhotic patients by qPCR and Western blot and in lung samples from non-CF and CF patients by qPCR. CBG binding assays with 3H-cortisol and the measurement of the elastase/α1-antitrypsin complex were performed using the plasmas. CBG expression increased in the liver at the transcript and protein level but not in the plasma of CF patients. This is possibly due to an increase of plasmatic elastase. We demonstrated that pulmonary CBG was expressed in the bronchi and bronchioles and its expression decreased in the CF lungs, at both levels studied. Despite the opposite expression of hepatic and pulmonary CBG in CF patients, the concentration of CBG in the plasma was normal. Thus, CBG might be useful to deliver an optimized synthetic GC displaying high affinity for CBG to the main inflammatory site in the context of CF, e.g., the lung.

5.
Cell Signal ; 24(5): 1093-9, 2012 May.
Article in English | MEDLINE | ID: mdl-22285804

ABSTRACT

Reduction of lung inflammation is one of the goals of cystic fibrosis (CF) therapy. Among anti-inflammatory molecules, glucocorticoids (GC) are one of the most prescribed. However, CF patients seem to be resistant to glucocorticoid treatment. Several molecular mechanisms that contribute to decrease anti-inflammatory effects of glucocorticoids have been identified in pulmonary diseases, but the molecular actions of glucocorticoids have never been studied in CF. In the cytoplasm, glucocorticoids bind to glucocorticoid receptor (GR) and then, control NF-κB and MAPK pathways through direct interaction with AP-1 and NF-κB in the nucleus. Conversely, MAPK can regulate glucocorticoid activation by targeting GR phosphorylation. Together these pathways regulate IL-8 release in the lung. Using bronchial epithelial cell lines derived from non CF and CF patients, we analyzed GR-based effects of glucocorticoids on NF-κB and MAPK pathways, after stimulation with TNF-α. We demonstrate that the synthetic glucocorticoid dexamethasone (Dex) significantly decreases IL-8 secretion, AP-1 and NF-κB activity in CF cells in a pro-inflammatory context. Moreover, we show that p38 MAPK controls IL-8 release by determining GR activation through specific phosphorylation on serine 211. Finally, we demonstrate a synergistic effect of dexamethasone treatment and inhibition of p38 MAPK inducing more than 90% inhibition of IL-8 production in CF cells. All together, these results demonstrate the good responsiveness to glucocorticoids of CF bronchial epithelial cells and the reciprocal link between glucocorticoids and p38 MAPK in the control of CF lung inflammation.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Bronchioles/pathology , Cystic Fibrosis/pathology , Dexamethasone/pharmacology , Epithelial Cells/drug effects , Glucocorticoids/pharmacology , Anisomycin/pharmacology , Cell Line , Enzyme Induction/drug effects , Humans , Inflammation , Interleukin-8/metabolism , NF-kappa B/metabolism , Phosphorylation , Protein Transport/drug effects , Receptors, Glucocorticoid/metabolism , Signal Transduction , Transcription Factor AP-1/metabolism , Transcriptional Activation , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/metabolism
6.
Eur J Pharmacol ; 674(1): 1-6, 2012 Jan 05.
Article in English | MEDLINE | ID: mdl-22056837

ABSTRACT

Cystic fibrosis is a hereditary disease caused by a mutation in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene that encodes a chloride (Cl(-)) channel. Cystic fibrosis pulmonary pathophysiology is characterised by chronic inflammation and bacterial infections. Azithromycin, a macrolide antibiotic, has shown promising anti-inflammatory properties in some inflammatory pulmonary diseases. Moreover, all clinical studies have presented an improvement of the respiratory condition of cystic fibrosis patients, but the molecular and cellular mechanisms remain unknown. The aim of this study was to investigate, in bronchial epithelial cells, the effects of azithromycin on inflammatory pathways involved in cystic fibrosis. We have analysed the effects of azithromycin on cystic fibrosis and non-cystic fibrosis bronchial epithelial cell lines but also in non-immortalized non-cystic fibrosis human glandular cells. To create an inflammatory context, cells were treated with Tumor Necrosis Factor (TNF)-α or Interleukin (IL)1-ß. Activation of the NF-κB pathway was investigated by luciferase assay, western blotting, and by Förster Resonance Energy Transfer imaging, allowing the detection of the interaction between the transcription factor and its inhibitor in live cells. In all conditions tested, azithromycin did not have an anti-inflammatory effect on the cystic fibrosis human bronchial epithelial cells and on CFTR-inhibited primary human bronchial glandular cells. More, our data showed no effect of azithromycin on IL-1ß- or TNF-α-induced IL-8 secretion and NF-κB pathway activation. Taken together, these data show that azithromycin is unable to decrease in vitro inflammation in cystic fibrosis cells from airways.


Subject(s)
Azithromycin/pharmacology , Bronchi/pathology , Cystic Fibrosis/drug therapy , Cystic Fibrosis/pathology , Epithelial Cells/drug effects , Azithromycin/therapeutic use , Cell Line , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/deficiency , Epithelial Cells/metabolism , Humans , Inflammation/drug therapy , Interleukin-1beta/pharmacology , Interleukin-8/metabolism , NF-kappa B/metabolism , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/pharmacology
7.
Antimicrob Agents Chemother ; 55(4): 1792-3, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21220528

ABSTRACT

Azithromycin (AZM) has shown promising anti-inflammatory properties in chronic obstructive pulmonary diseases, and clinical studies have presented an improvement in the respiratory condition of cystic fibrosis (CF) patients. The aim of this study was to investigate, in human airway cells, the mechanism by which AZM has beneficial effects in CF. We demonstrated that AZM did not have any anti-inflammatory effect on CF airway cells but restored Cl(-) efflux.


Subject(s)
Anti-Bacterial Agents/pharmacology , Azithromycin/pharmacology , Chlorides/metabolism , Cystic Fibrosis/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Respiratory System/cytology , Biological Transport/drug effects , Cell Line , Cells, Cultured , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...