Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Infect Immun ; 92(5): e0052223, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38629842

ABSTRACT

Streptococcus pneumoniae (pneumococcus) remains a serious cause of pulmonary and systemic infections globally, and host-directed therapies are lacking. The aim of this study was to test the therapeutic efficacy of asapiprant, an inhibitor of prostaglandin D2 signaling, against pneumococcal infection. Treatment of young mice with asapiprant after pulmonary infection with invasive pneumococci significantly reduced systemic spread, disease severity, and host death. Protection was specific against bacterial dissemination from the lung to the blood but had no effect on pulmonary bacterial burden. Asapiprant-treated mice had enhanced antimicrobial activity in circulating neutrophils, elevated levels of reactive oxygen species (ROS) in lung macrophages/monocytes, and improved pulmonary barrier integrity indicated by significantly reduced diffusion of fluorescein isothiocyanate (FITC)-dextran from lungs into the circulation. These findings suggest that asapiprant protects the host against pneumococcal dissemination by enhancing the antimicrobial activity of immune cells and maintaining epithelial/endothelial barrier integrity in the lungs.


Subject(s)
Pneumococcal Infections , Streptococcus pneumoniae , Animals , Streptococcus pneumoniae/drug effects , Mice , Pneumococcal Infections/drug therapy , Pneumococcal Infections/microbiology , Lung/microbiology , Lung/pathology , Female , Reactive Oxygen Species/metabolism , Disease Models, Animal , Mice, Inbred C57BL , Neutrophils/immunology , Neutrophils/drug effects
2.
Nature ; 605(7908): 146-151, 2022 05.
Article in English | MEDLINE | ID: mdl-35314834

ABSTRACT

Coronavirus disease 2019 (COVID-19) is especially severe in aged populations1. Vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are highly effective, but vaccine efficacy is partly compromised by the emergence of SARS-CoV-2 variants with enhanced transmissibility2. The emergence of these variants emphasizes the need for further development of anti-SARS-CoV-2 therapies, especially for aged populations. Here we describe the isolation of highly virulent mouse-adapted viruses and use them to test a new therapeutic drug in infected aged animals. Many of the alterations observed in SARS-CoV-2 during mouse adaptation (positions 417, 484, 493, 498 and 501 of the spike protein) also arise in humans in variants of concern2. Their appearance during mouse adaptation indicates that immune pressure is not required for selection. For murine SARS, for which severity is also age dependent, elevated levels of an eicosanoid (prostaglandin D2 (PGD2)) and a phospholipase (phospholipase A2 group 2D (PLA2G2D)) contributed to poor outcomes in aged mice3,4. mRNA expression of PLA2G2D and prostaglandin D2 receptor (PTGDR), and production of PGD2 also increase with ageing and after SARS-CoV-2 infection in dendritic cells derived from human peripheral blood mononuclear cells. Using our mouse-adapted SARS-CoV-2, we show that middle-aged mice lacking expression of PTGDR or PLA2G2D are protected from severe disease. Furthermore, treatment with a PTGDR antagonist, asapiprant, protected aged mice from lethal infection. PTGDR antagonism is one of the first interventions in SARS-CoV-2-infected animals that specifically protects aged animals, suggesting that the PLA2G2D-PGD2/PTGDR pathway is a useful target for therapeutic interventions.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Eicosanoids , Leukocytes, Mononuclear , Mice , Organic Chemicals , Oxazoles , Piperazines , Polyesters , Prostaglandins , Spike Glycoprotein, Coronavirus , Sulfonamides
3.
bioRxiv ; 2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33907749

ABSTRACT

Coronavirus disease 2019 (COVID-19) is especially severe in aged populations1. Resolution of the COVID-19 pandemic has been advanced by the recent development of SARS-CoV-2 vaccines, but vaccine efficacy is partly compromised by the recent emergence of SARS-CoV-2 variants with enhanced transmissibility2. The emergence of these variants emphasizes the need for further development of anti-SARS-CoV-2 therapies, especially in aged populations. Here, we describe the isolation of a new set of highly virulent mouse-adapted viruses and use them to test a novel therapeutic drug useful in infections of aged animals. Initially, we show that many of the mutations observed in SARS-CoV-2 during mouse adaptation (at positions 417, 484, 501 of the spike protein) also arise in humans in variants of concern (VOC)2. Their appearance during mouse adaptation indicates that immune pressure is not required for their selection. Similar to the human infection, aged mice infected with mouse-adapted SARS-CoV-2 develop more severe disease than young mice. In murine SARS, in which severity is also age-dependent, we showed that elevated levels of an eicosanoid, prostaglandin D2 (PGD2) and of a phospholipase, PLA2G2D, contributed to poor outcomes in aged mice3,4. Using our virulent mouse-adapted SARS-CoV-2, we show that infection of middle-aged mice lacking expression of DP1, a PGD2 receptor, or PLA2G2D are protected from severe disease. Further, treatment with a DP1 antagonist, asapiprant, protected aged mice from a lethal infection. DP1 antagonism is one of the first interventions in SARS-CoV-2-infected animals that specifically protects aged animals, and demonstrates that the PLA2G2D-PGD2/DP1 pathway is a useful target for therapeutic interventions.

4.
Nat Commun ; 7: 13363, 2016 11 22.
Article in English | MEDLINE | ID: mdl-27874859

ABSTRACT

Heterochronic parabiosis rejuvenates the performance of old tissue stem cells at some expense to the young, but whether this is through shared circulation or shared organs is unclear. Here we show that heterochronic blood exchange between young and old mice without sharing other organs, affects tissues within a few days, and leads to different outcomes than heterochronic parabiosis. Investigating muscle, liver and brain hippocampus, in the presence or absence of muscle injury, we find that, in many cases, the inhibitory effects of old blood are more pronounced than the benefits of young, and that peripheral tissue injury compounds the negative effects. We also explore mechanistic explanations, including the role of B2M and TGF-beta. We conclude that, compared with heterochronic parabiosis, heterochronic blood exchange in small animals is less invasive and enables better-controlled studies with more immediate translation to therapies for humans.


Subject(s)
Aging , Blood Transfusion , Animals , Cellular Senescence , Male , Mice , Mice, Inbred C57BL , Physical Endurance , Rejuvenation , Stem Cells/physiology
5.
Aging (Albany NY) ; 7(10): 754-65, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26540176

ABSTRACT

This review provides balanced analysis of the advances in systemic regulation of young and old tissue stem cells and suggests strategies for accelerating development of therapies to broadly combat age-related tissue degenerative pathologies. Many highlighted recent reports on systemic tissue rejuvenation combine parabiosis with a "silver bullet" putatively responsible for the positive effects. Attempts to unify these papers reflect the excitement about this experimental approach and add value in reproducing previous work. At the same time, defined molecular approaches, which are "beyond parabiosis" for the rejuvenation of multiple old organs represent progress toward attenuating or even reversing human tissue aging.


Subject(s)
Adult Stem Cells/physiology , Aging/physiology , Cellular Senescence , Rejuvenation/physiology , Animals , Bone Morphogenetic Proteins/metabolism , Growth Differentiation Factors/metabolism , Humans , Parabiosis
6.
Rejuvenation Res ; 13(2-3): 298-300, 2010.
Article in English | MEDLINE | ID: mdl-20426617

ABSTRACT

A major type of unwanted cells that accumulate in aging are anergic cytotoxic T cells. These cells often have virus-specific T cell receptors, as well as other surface markers that distinguish them from their youthful counterparts, and they are thought to play a major role in the decline of the immune system with age. Here we consider two surface markers thought to define these cells in mice, CD8 and Killer cell lectin-like receptor G1 (KLRG1), and a means we developed to remove these cells from the blood of aged C57BL/6 mice. Using antibodies with magnetic nanoparticles linked to their Fc domains, we first developed a method to use magnets to filter out the unwanted cells from the blood and later constructed a device that does this automatically. We demonstrated that this device could reduce the KLRG1-positive CD8 cell count in aged mouse blood by a factor of 7.3 relative to the total CD8 cell compartment, reaching a level typically seen only in very young animals.


Subject(s)
Aging/immunology , Antilymphocyte Serum/therapeutic use , Nanoparticles/therapeutic use , T-Lymphocytes, Cytotoxic/pathology , Aging/pathology , Animals , Antilymphocyte Serum/chemistry , CD8-Positive T-Lymphocytes/pathology , Cell Separation/methods , Cytapheresis/methods , Lectins, C-Type , Magnetics , Mice , Mice, Inbred C57BL , Nanoparticles/chemistry , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism
7.
Rejuvenation Res ; 12(6): 411-9, 2009 Dec.
Article in English | MEDLINE | ID: mdl-20041735

ABSTRACT

Abstract A major driver of aging is catabolic insufficiency, the inability of our bodies to break down certain substances that accumulate slowly throughout the life span. Even though substance buildup is harmless while we are young, by old age the accumulations can reach a toxic threshold and cause disease. This includes some of the most prevalent diseases in old age-atherosclerosis and macular degeneration. Atherosclerosis is associated with the buildup of cholesterol and its oxidized derivatives (particularly 7-ketocholesterol) in the artery wall. Age-related macular degeneration is associated with carotenoid lipofuscin, primarily the pyridinium bisretinoid A2E. Medical bioremediation is the concept of reversing the substance accumulations by using enzymes from foreign species to break down the substances into forms that relieve the disease-related effect. We report on an enzyme discovery project to survey the availability of microorganisms and enzymes with these abilities. We found that such microorganisms and enzymes exist. We identified numerous bacteria having the ability to transform cholesterol and 7-ketocholesterol. Most of these species initiate the breakdown by same reaction mechanism as cholesterol oxidase, and we have used this enzyme directly to reduce the toxicity of 7-ketocholesterol, the major toxic oxysterol, to cultured human cells. We also discovered that soil fungi, plants, and some bacteria possess peroxidase and carotenoid cleavage oxygenase enzymes that effectively destroy with varied degrees of efficiency and selectivity the carotenoid lipofuscin found in macular degeneration.


Subject(s)
Biotransformation , Biotransformation/drug effects , Carotenoids/chemistry , Carotenoids/metabolism , Cell Line , Cholesterol Oxidase/metabolism , Chromatography, Liquid , Environmental Microbiology , Esters/chemistry , Esters/metabolism , Humans , Hydrolysis/drug effects , Isotope Labeling , Ketocholesterols/chemistry , Ketocholesterols/metabolism , Mass Spectrometry , Oxygenases/metabolism , Peroxidases/metabolism , Pyridinium Compounds/chemistry , Pyridinium Compounds/metabolism , Retinoids/chemistry , Retinoids/metabolism , Sterols/chemistry , Sterols/metabolism , Sterols/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...