Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(50): eadi7902, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38091399

ABSTRACT

Metastasis is a nonrandom process with varying degrees of organotropism-specific source-acceptor seeding. Understanding how patterns between source and acceptor tumors emerge remains a challenge in oncology. We hypothesize that organotropism results from the macronutrient niche of cells in source and acceptor organs. To test this, we constructed and analyzed a metastatic network based on 9303 records across 28 tissue types. We found that the topology of the network is nested and modular with scale-free degree distributions, reflecting organotropism along a specificity/generality continuum. The variation in topology is significantly explained by the matching of metastatic cells to their stoichiometric niche. Specifically, successful metastases are associated with higher phosphorus content in the acceptor compared to the source organ, due to metabolic constraints in proliferation crucial to the invasion of new tissues. We conclude that metastases are codetermined by processes at source and acceptor organs, where phosphorus content is a limiting factor orchestrating tumor ecology.


Subject(s)
Ecosystem , Phosphorus , Humans , Cell Line, Tumor , Neoplasm Metastasis
2.
Artif Organs ; 46(2): 210-218, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34519358

ABSTRACT

The lack of organs available for transplantation is a global problem. The high mortality rates on the waiting list and the high number of discarded livers are reasons to develop new tools in the preservation and transplantation process. New tools should also be available for low-income countries. This article reports the development of customized normothermic machine perfusion (NMP). An ex vivo dual perfusion machine was designed, composed of a common reservoir organ box (CRO), a centrifugal pump (portal system, low pressure), and a roller pump (arterial system, high pressure). Porcine livers (n = 5) were perfused with an oxygenated normothermic (37℃) strategy for 3 hours. Hemodynamic variables, metabolic parameters, and bile production during preservation were analyzed. Arterial and portal flow remain stable during perfusion. Total bilirubin production was 11.25 mL (4-14.5) at 180 minutes. The median pH value reached 7.32 (7.25-7.4) at 180 minutes. Lactate values decreased progressively to normalization at 120 minutes. This perfusion setup was stable and able to maintain the metabolic activity of a liver graft in a porcine animal model. Design and initial results from this customized NMP are promising for a future clinical application in low-income countries.


Subject(s)
Liver/metabolism , Organ Preservation/methods , Perfusion/instrumentation , Animals , Equipment Design , Female , Hemodynamics , Liver/blood supply , Liver Transplantation , Swine
3.
Front Pharmacol ; 12: 587003, 2021.
Article in English | MEDLINE | ID: mdl-33692687

ABSTRACT

Background: The process of brain death (BD) leads to a pro-inflammatory state of the donor lung, which deteriorates its quality. In an attempt to preserve lung quality, methylprednisolone is widely recommended in donor lung management. However, clinical treatment doses vary and the dose-effect relation of methylprednisolone on BD-induced lung inflammation remains unknown. The aim of this study was to investigate the effect of three different doses methylprednisolone on the BD-induced inflammatory response. Methods: BD was induced in rats by inflation of a Fogarty balloon catheter in the epidural space. After 60 min of BD, saline or methylprednisolone (low dose (5 mg/kg), intermediate dose (12.5 mg/kg) or high dose (22.5 mg/kg)) was administered intravenously. The lungs were procured and processed after 4 h of BD. Inflammatory gene expressions were analyzed by RT-qPCR and influx of neutrophils and macrophages were quantified with immunohistochemical staining. Results: Methylprednisolone treatment reduced neutrophil chemotaxis as demonstrated by lower IL-8-like CINC-1 and E-selectin levels, which was most evident in rats treated with intermediate and high doses methylprednisolone. Macrophage chemotaxis was attenuated in all methylprednisolone treated rats, as corroborated by lower MCP-1 levels compared to saline treated rats. Thereby, all doses methylprednisolone reduced TNF-α, IL-6 and IL-1ß tissue levels. In addition, intermediate and high doses methylprednisolone induced a protective anti-inflammatory response, as reflected by upregulated IL-10 expression when compared to saline treated brain-dead rats. Conclusion: We showed that intermediate and high doses methylprednisolone share most potential to target BD-induced lung inflammation in rats. Considering possible side effects of high doses methylprednisolone, we conclude from this study that an intermediate dose of 12.5 mg/kg methylprednisolone is the optimal treatment dose for BD-induced lung inflammation in rats, which reduces the pro-inflammatory state and additionally promotes a protective, anti-inflammatory response.

4.
PLoS One ; 15(11): e0242827, 2020.
Article in English | MEDLINE | ID: mdl-33253309

ABSTRACT

Donor brain death (BD) is initiated by an increase in intracranial pressure (ICP), which subsequently damages the donor lung. In this study, we investigated whether the speed of ICP increase affects quality of donor lungs, in a rat model for fast versus slow BD induction. Rats were assigned to 3 groups: 1) control, 2) fast BD induction (ICP increase over 1 min) or 3) slow BD induction (ICP increase over 30 min). BD was induced by epidural inflation of a balloon catheter. Brain-dead rats were sacrificed after 0.5 hours, 1 hour, 2 hours and 4 hours to study time-dependent changes. Hemodynamic stability, histological lung injury and inflammatory status were investigated. We found that fast BD induction compromised hemodynamic stability of rats more than slow BD induction, reflected by higher mean arterial pressures during the BD induction period and an increased need for hemodynamic support during the BD stabilization phase. Furthermore, fast BD induction increased histological lung injury scores and gene expression levels of TNF-α and MCP-1 at 0.5 hours after induction. Yet after donor stabilization, inflammatory status was comparable between the two BD models. This study demonstrates fast BD induction deteriorates quality of donor lungs more on a histological level than slow BD induction.


Subject(s)
Brain Death/physiopathology , Brain/physiopathology , Lung Transplantation , Lung/physiopathology , Animals , Hemodynamics , Male , Rats , Tissue Donors
5.
Transplantation ; 101(4): 746-753, 2017 04.
Article in English | MEDLINE | ID: mdl-28323775

ABSTRACT

BACKGROUND: Brain death (BD)-related lipid peroxidation, measured as serum malondialdehyde (MDA) levels, correlates with delayed graft function in renal transplant recipients. How BD affects lipid peroxidation is not known. The extent of BD-induced organ damage is influenced by the speed at which intracranial pressure increases. To determine possible underlying causes of lipid peroxidation, we investigated the renal redox balance by assessing oxidative and antioxidative processes in kidneys of brain-dead rats after fast and slow BD induction. METHODS: Brain death was induced in 64 ventilated male Fisher rats by inflating a 4.0F Fogarty catheter in the epidural space. Fast and slow inductions were achieved by an inflation speed of 0.45 and 0.015 mL/min, respectively, until BD confirmation. Healthy non-brain-dead rats served as reference values. Brain-dead rats were monitored for 0.5, 1, 2, or 4 hours, after which organs and blood were collected. RESULTS: Increased MDA levels became evident at 2 hours of slow BD induction at which increased superoxide levels, decreased glutathione peroxidase (GPx) activity, decreased glutathione levels, increased inducible nitric oxide synthase and heme-oxygenase 1 expression, and increased plasma creatinine levels were evident. At 4 hours after slow BD induction, superoxide, MDA, and plasma creatinine levels increased further, whereas GPx activity remained decreased. Increased MDA and plasma creatinine levels also became evident after 4 hours fast BD induction. CONCLUSION: Brain death leads to increased superoxide production, decreased GPx activity, decreased glutathione levels, increased inducible nitric oxide synthase and heme-oxygenase 1 expression, and increased MDA and plasma creatinine levels. These effects were more pronounced after slow BD induction. Modulation of these processes could lead to decreased incidence of delayed graft function.


Subject(s)
Antioxidants/metabolism , Brain Death/metabolism , Brain/metabolism , Lipid Peroxidation , Oxidative Stress , Animals , Biomarkers/blood , Brain/physiopathology , Brain Death/blood , Brain Death/physiopathology , Catalase/metabolism , Creatinine/blood , Disease Models, Animal , Glutathione/blood , Glutathione Peroxidase/metabolism , Glutathione Reductase/metabolism , Heme Oxygenase (Decyclizing)/genetics , Heme Oxygenase (Decyclizing)/metabolism , Kidney/enzymology , Male , Malondialdehyde/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Oxidation-Reduction , Rats, Inbred F344 , Superoxide Dismutase/metabolism , Superoxides/metabolism , Time Factors
6.
Oxid Med Cell Longev ; 2017: 7120962, 2017.
Article in English | MEDLINE | ID: mdl-29410735

ABSTRACT

Many factors during the transplantation process influence posttransplant graft function and survival, including donor type and age, graft preservation methods (cold storage, machine perfusion), and ischemia-reperfusion injury. Successively, they will lead to cellular and molecular alterations that determine cell and ultimately organ fate. Oxidative stress and autophagy are implicated in posttransplant outcome since they are both affected by the stress responses triggered in each step (donor, preservation, and recipient) of the transplantation process. Furthermore, oxidative stress influences autophagy and vice versa. Interestingly, both processes have positive as well as negative effects on graft outcome, suggesting they are tightly linked during the transplantation process. In this review, we discuss the importance, regulation and crosstalk of oxidative signals, and autophagy in the field of transplantation medicine.


Subject(s)
Autophagy/genetics , Reactive Oxygen Species/metabolism , Transplantation/methods , Humans
7.
J Transl Med ; 14(1): 141, 2016 05 19.
Article in English | MEDLINE | ID: mdl-27193126

ABSTRACT

BACKGROUND: Donor brain death (BD) is an independent risk factor for graft survival in recipients. While in some patients BD results from a fast increase in intracranial pressure, usually associated with trauma, in others, intracranial pressure increases more slowly. The speed of intracranial pressure increase may be a possible risk factor for renal and hepatic graft dysfunction. This study aims to assess the effect of speed of BD induction on renal and hepatic injury markers. METHODS: BD induction was performed in 64 mechanically ventilated male Fisher rats by inflating a 4.0F Fogarty catheter in the epidural space. Rats were observed for 0.5, 1, 2 or 4 h following BD induction. Slow induction was achieved by inflating the balloon-catheter at a speed of 0.015 ml/min until confirmation of BD. Fast induction was achieved by inflating the balloon at 0.45 ml/min for 1 min. Plasma, kidney and liver tissue were collected for analysis. RESULTS: Slow BD induction led to higher plasma creatinine at all time points compared to fast induction. Furthermore, slow induction led to increased renal mRNA expression of IL-6, and renal MDA values after 4 h of BD compared to fast induction. Hepatic mRNA expression of TNF-α, Bax/Bcl-2, and protein expression of caspase-3 was significantly higher due to slow induction after 4 h of BD compared to fast induction. PMN infiltration was not different between fast and slow induction in both renal and hepatic tissue. CONCLUSION: Slow induction of BD leads to poorer renal function compared to fast induction. Renal inflammatory and oxidative stress markers were increased. Liver function was not affected by speed of BD induction but hepatic inflammatory and apoptosis markers increased significantly due to slow induction compared to fast induction. These results provide initial proof that speed of BD induction influences detrimental renal and hepatic processes which could signify different donor management strategies for patients progressing to BD at different speeds.


Subject(s)
Apoptosis , Brain Death/physiopathology , Kidney Function Tests , Kidney/physiopathology , Liver/pathology , Animals , Biomarkers/blood , Blood Pressure , Brain Death/blood , Brain Death/metabolism , Caspase 3/metabolism , Gene Expression Regulation , Inflammation/blood , Inflammation/genetics , Inflammation/pathology , Interleukin-6/genetics , Male , Malondialdehyde/metabolism , Neutrophils/metabolism , Rats, Inbred F344 , Real-Time Polymerase Chain Reaction , bcl-2-Associated X Protein/metabolism
8.
PLoS One ; 10(10): e0138749, 2015.
Article in English | MEDLINE | ID: mdl-26437380

ABSTRACT

BACKGROUND: Thyroid hormone treatment in brain-dead organ donors has been extensively studied and applied in the clinical setting. However, its clinical applicability remains controversial due to a varying degree of success and a lack of mechanistic understanding about the therapeutic effects of 3,3',5-Triiodo-L-thyronine (T3). T3 pre-conditioning leads to anti-apoptotic and pro-mitotic effects in liver tissue following ischemia/reperfusion injury. Therefore, we aimed to study the effects of T3 pre-conditioning in the liver of brain-dead rats. METHODS: Brain death (BD) was induced in mechanically ventilated rats by inflation of a Fogarty catheter in the epidural space. T3 (0.1 mg/kg) or vehicle was administered intraperitoneally 2 h prior to BD induction. After 4 h of BD, serum and liver tissue were collected. RT-qPCR, routine biochemistry, and immunohistochemistry were performed. RESULTS: Brain-dead animals treated with T3 had lower plasma levels of AST and ALT, reduced Bax gene expression, and less hepatic cleaved Caspase-3 activation compared to brain-dead animals treated with vehicle. Interestingly, no differences in the expression of inflammatory genes (IL-6, MCP-1, IL-1ß) or the presence of pro-mitotic markers (Cyclin-D and Ki-67) were found in brain-dead animals treated with T3 compared to vehicle-treated animals. CONCLUSION: T3 pre-conditioning leads to beneficial effects in the liver of brain-dead rats as seen by lower cellular injury and reduced apoptosis, and supports the suggested role of T3 hormone therapy in the management of brain-dead donors.


Subject(s)
Apoptosis/drug effects , Brain Death/pathology , Liver/drug effects , Liver/pathology , Triiodothyronine/pharmacology , Animals , Brain Death/metabolism , Liver/metabolism , Male , Mitosis/drug effects , Oxidative Stress/drug effects , Rats , Rats, Inbred F344
9.
Biomed Res Int ; 2015: 207534, 2015.
Article in English | MEDLINE | ID: mdl-26090389

ABSTRACT

Effect of glucocorticoid administration on improving the outcomes of kidney and liver allografts has not been clearly elucidated. This study investigated the effect of prednisolone administration after onset of brain death (BD) on kidney and liver in a controlled rat model of BD. BD was induced in rats by inflating an epidurally placed balloon catheter. Animals were treated with saline or prednisolone (5, 12.5, or 22.5 mg/kg) one hour after the onset of BD. After 4 hours of BD, experiments were terminated and serum and tissues were collected. Tissue gene and protein expression were measured for markers of inflammation, apoptosis, and cellular stress response markers. Prednisolone caused a reduction of plasma levels of IL-6, while the tissue expression of IL-6, IL-1ß, and MCP-1 in both kidney and liver were also reduced. Creatinine plasma levels, complement (C3) expression, HSP-70, HO-1, Bcl2/BAX ratio, and PMN influx did not significantly change in kidney nor liver. Plasma AST and LDH levels were increased in the prednisolone treated group. Our results demonstrate prednisolone can has an anti-inflammatory effect mediated through reducing serum circulating cytokines. However, this anti-inflammatory effect does not translate into improved kidney function and indeed was associated with increased liver injury markers.


Subject(s)
Brain Death/physiopathology , Cytokines/biosynthesis , Inflammation/drug therapy , Prednisolone/administration & dosage , Animals , Apoptosis/drug effects , Cytokines/blood , Inflammation/physiopathology , Kidney/drug effects , Kidney/metabolism , Kidney/physiopathology , Liver/drug effects , Liver/metabolism , Liver/physiopathology , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...